
NEURAL NETWORK APPROACHES TO MULTI-SENSOR 

DATA FUSION IN WSN: A COMPARATIVE STUDY 

1K. Chandra Shekar Naik, 2A. Sainath, 3Kappi Upendhar 
1Assistant Professor, Dept of ECE, AVN Institute of Engineering and Technology, 

 2Assistant Professor, Dept of CSE(CS), AVN Institute of Engineering and Technology, 

 3Assistant Professor, Dept of CSE(AIML), AVN Institute of Engineering and Technology 

ABSTRACT: This study presents a comparative analysis of neural network approaches for 

multi-sensor data fusion in Wireless Sensor Networks (WSNs). We evaluate the performance of 

Feedforward Neural Networks (FNNs), Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Autoencoders using key metrics 

such as accuracy, precision, recall, F1 score, training time, inference time, and model size. Our 

results indicate that CNNs and LSTMs achieve the highest accuracy and F1 scores, demonstrating 

their efficacy in capturing complex patterns and dependencies in sensor data. CNNs excel in spatial 

data integration, while LSTMs are superior in handling temporal sequences. FNNs offer a balanced 

performance with moderate computational demands, and Autoencoders, while efficient in data 

compression, show lower predictive accuracy. The study provides valuable insights into the trade-offs 

between accuracy and computational efficiency, guiding the selection of appropriate neural network 

models based on specific application requirements and resource constraints. 

INTRODUCTION 

Wireless Sensor Networks (WSNs) represent a crucial technological advancement in the 

realm of data collection and monitoring. A WSN is a network composed of spatially 

distributed, autonomous sensors that communicate wirelessly to collect and relay data about 

various physical or environmental conditions. Each sensor node within the network typically 

includes sensing, processing, and communication components. The sensing unit measures 

specific parameters such as temperature, humidity, pressure, or light, while the processing 

unit analyzes the collected data. The communication unit is responsible for transmitting this 

data to a central node or base station, often through a multi-hop process involving several 

intermediate nodes. 

The importance of WSNs spans a diverse range of applications, underscoring their versatility 

and effectiveness. In environmental monitoring, WSNs are employed to track and analyze 

environmental variables, including air and water quality, soil conditions, and climate 

changes. These networks provide real-time data that are vital for detecting environmental 

hazards, managing natural resources, and studying ecological patterns. For instance, in 

agriculture, WSNs can monitor soil moisture levels and weather conditions to optimize 

irrigation practices, thereby enhancing crop yield and sustainability. 
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In smart cities, WSNs play a pivotal role in creating more efficient and responsive urban 

environments. They enable smart infrastructure systems, such as intelligent traffic 

management, which adjusts traffic signals based on real-time traffic flow data to reduce 

congestion and improve road safety. WSNs also contribute to energy management by 

monitoring and controlling lighting systems based on occupancy and ambient light levels, 

thus reducing energy consumption. Additionally, these networks support public safety 

through applications like surveillance and emergency response systems, where sensor data 

can help in early detection of incidents and prompt response. 

The inherent advantages of WSNs include their ability to provide fine-grained, localized data 

and their scalability to cover large areas through the deployment of numerous sensor nodes. 

These networks are also adaptable to a wide range of environments, from remote and harsh 

locations to densely populated urban areas. However, the effective deployment and utilization 

of WSNs are accompanied by challenges, such as energy efficiency, data accuracy, and 

network reliability. Addressing these challenges often requires sophisticated data processing 

and fusion techniques, which enhance the utility and performance of WSNs. 

Multi-sensor data fusion refers to the process of integrating data from multiple sensors to 

produce a more accurate, reliable, and comprehensive representation of the monitored 

environment than what could be achieved by any single sensor alone. This process involves 

combining and analyzing data collected from different sources to extract meaningful insights, 

improve data quality, and enhance decision-making capabilities. 

In the context of Wireless Sensor Networks (WSNs), where data is gathered from numerous 

distributed sensors, each providing information on specific environmental variables, data 

fusion becomes essential for several reasons. Firstly, sensors in a WSN often vary in their 

accuracy, precision, and reliability. Individual sensors may have limitations due to factors 

such as calibration errors, noise, or environmental conditions. By fusing data from multiple 

sensors, it is possible to mitigate these limitations and obtain a more accurate representation 

of the monitored parameters. 

Data fusion also addresses the challenge of incomplete or sparse data. In many WSN 

applications, some sensors may fail or become temporarily unavailable due to environmental 

conditions or other issues. Multi-sensor data fusion techniques can compensate for missing or 

unreliable data by integrating information from other sensors, thereby ensuring that the 
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overall data set remains robust and informative. This redundancy helps in maintaining the 

continuity and integrity of the data. 

Moreover, multi-sensor data fusion enhances the spatial and temporal resolution of the 

data. Sensors may provide data at different spatial locations or times, and fusion techniques 

can combine these varied data points to create a more detailed and comprehensive view of the 

monitored area. For example, in environmental monitoring, combining temperature readings 

from multiple sensors across a region can provide a more accurate representation of 

temperature variations and trends than any single sensor could offer. 

Another critical aspect of data fusion is reducing uncertainty. By aggregating information 

from various sensors, it becomes possible to refine measurements and reduce the impact of 

random errors or outliers. This leads to improved reliability of the data, which is crucial for 

applications requiring high accuracy, such as predictive maintenance or early warning 

systems. 

In practical terms, multi-sensor data fusion can be achieved through several approaches, 

ranging from simple averaging or statistical methods to more complex algorithms involving 

machine learning and neural networks. The choice of method depends on the specific 

requirements of the application and the nature of the data being fused. For instance, advanced 

fusion techniques, such as those involving neural networks, can capture complex patterns and 

correlations between different sensor inputs, leading to more sophisticated and accurate data 

analysis. 

Objective 

The primary objective of this study is to conduct a comparative analysis of neural network 

approaches to multi-sensor data fusion in Wireless Sensor Networks (WSNs). With the rapid 

development of neural network models and their applications in data fusion, it is crucial to 

evaluate and compare different neural network techniques to determine their effectiveness, 

strengths, and limitations in the context of WSNs. 

Specifically, this study aims to achieve the following goals: 

1. Evaluate the Performance of Different Neural Network Models: This involves 

assessing various neural network architectures—such as Feedforward Neural 
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Networks (FNNs), Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Autoencoders—in terms of their ability to integrate and 

analyze data from multiple sensors. The performance will be measured using metrics 

such as accuracy, precision, recall, and computational efficiency. 

2. Analyze the Effectiveness of Data Fusion Strategies: The study will compare how 

different neural network models handle data fusion tasks, including feature-level 

fusion, decision-level fusion, and hybrid approaches. This analysis will help identify 

which strategies are most effective for improving the quality and reliability of the 

fused data. 

3. Identify Strengths and Limitations: By examining the results, the study will 

highlight the strengths and limitations of each neural network approach. This includes 

understanding how each model performs under different conditions, such as varying 

data quality or sensor reliability, and identifying any challenges or drawbacks 

associated with their implementation. 

4. Provide Recommendations for Practical Applications: Based on the comparative 

analysis, the study will offer insights and recommendations for selecting and applying 

neural network techniques in real-world WSN applications. This will guide 

practitioners and researchers in choosing the most suitable neural network models for 

specific data fusion needs. 

LITERATURE SURVEY 

Wireless Sensor Networks (WSNs) are comprised of numerous sensor nodes distributed 

across a geographical area, designed to collect and transmit data wirelessly. The architecture 

of a WSN typically includes three main components: sensor nodes, a sink or base station, and 

a communication network. 

1. Sensor Nodes: Each sensor node in a WSN is equipped with three fundamental 

components: a sensing unit, a processing unit, and a communication unit. The sensing unit 

captures environmental data (e.g., temperature, humidity, motion) through various sensors. 

The processing unit performs initial data processing, such as filtering and aggregation, to 

prepare the data for transmission. The communication unit is responsible for transmitting 

the processed data to the sink or base station using wireless communication protocols. Nodes 

are often battery-powered, making energy efficiency a critical consideration. 

Journal of Engineering Sciences ICETT- Vol 15 Issue 11(S),2024

ISSN:0377-9254 jespublication.com Page 146



2. Sink or Base Station: The sink or base station is a central node that collects data from 

multiple sensor nodes. It acts as a gateway between the WSN and external systems, such as 

databases or user applications. The base station typically has more processing power and 

energy resources than individual sensor nodes and is responsible for higher-level data 

aggregation, analysis, and dissemination. 

3. Communication Network: Sensor nodes communicate with each other and with the base 

station through a wireless communication network. This network can use various protocols 

and technologies, including Zigbee, LoRa, and cellular networks. The network topology can 

be static or dynamic, and communication methods may include direct transmission or multi-

hop routing, where data is relayed through intermediate nodes to reach the base station. 

Challenges in WSNs: The effective operation of WSNs is subject to several challenges, 

particularly concerning data collection and fusion. 

• Energy Efficiency: Sensor nodes are typically powered by batteries with limited 

lifespan. Efficient energy management is crucial to extend the operational life of the 

network. Techniques such as data aggregation, efficient communication protocols, 

and energy-harvesting technologies are employed to address this challenge. 

• Data Quality and Reliability: Sensor data can be affected by noise, calibration 

errors, and environmental conditions. Ensuring the accuracy and reliability of the data 

collected from various sensors is essential for effective decision-making. 

• Data Redundancy and Aggregation: Multiple sensors may measure the same 

parameter, leading to data redundancy. Efficient data fusion techniques are required to 

aggregate and merge this redundant data to improve the overall quality and reduce the 

amount of transmitted data. 

• Scalability and Network Management: As the number of sensors increases, 

managing the network becomes more complex. Issues such as routing, data collision, 

and network congestion need to be addressed to ensure smooth operation. 

Data Fusion Techniques 

Data fusion in WSNs involves integrating data from multiple sensors to produce a more 

accurate and comprehensive representation of the monitored environment. Several traditional 

methods are commonly used for data fusion, each with its own strengths and applications: 
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1. Kalman Filters: Kalman filters are widely used for data fusion in dynamic systems where 

sensor data is subject to noise and uncertainty. The Kalman filter uses a recursive algorithm 

to estimate the state of a system based on a series of noisy measurements. It combines 

predictions from a system model with measurements to provide an optimal estimate. Kalman 

filters are particularly effective for applications requiring real-time data processing and 

tracking, such as vehicle navigation or environmental monitoring. 

2. Particle Filters: Particle filters, also known as Sequential Monte Carlo methods, are used 

for data fusion in non-linear and non-Gaussian systems. Unlike Kalman filters, which assume 

linearity and Gaussian noise, particle filters use a set of particles to represent the probability 

distribution of the system state. These particles are propagated over time, and their weights 

are updated based on the likelihood of observed measurements. Particle filters are suitable for 

complex scenarios with non-linear dynamics and multiple sources of uncertainty, such as 

robotic localization or tracking in cluttered environments. 

3. Bayesian Approaches: Bayesian data fusion methods are based on Bayes' theorem, which 

provides a probabilistic framework for combining prior knowledge with observed data. In 

Bayesian approaches, data fusion is performed by updating the probability distributions of 

system states based on new measurements. This method is highly flexible and can 

accommodate various sources of uncertainty and diverse data types. Bayesian approaches are 

used in applications requiring probabilistic reasoning and decision-making, such as sensor 

fusion for autonomous vehicles or medical diagnostics. 

Neural Network Approaches 

Neural networks have increasingly become a powerful tool for data fusion in various 

domains, including Wireless Sensor Networks (WSNs). Their ability to model complex 

relationships and learn from data has led to significant advancements in how multi-sensor 

data is integrated and analyzed. Several types of neural networks have been applied to data 

fusion, each offering unique advantages based on the nature of the data and the specific 

requirements of the fusion task. 

1. Feedforward Neural Networks (FNNs): Feedforward Neural Networks are one of the 

simplest and most commonly used types of neural networks. They consist of an input layer, 

one or more hidden layers, and an output layer. In the context of data fusion, FNNs are 
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utilized to combine features from multiple sensors into a unified representation. For example, 

FNNs can process data from different sensors by concatenating the features and passing them 

through hidden layers to learn complex patterns and correlations. FNNs are particularly 

useful when the relationships between input features are relatively straightforward and the 

data fusion task does not require temporal or spatial context. 

2. Convolutional Neural Networks (CNNs): Convolutional Neural Networks are 

specialized neural networks designed to process grid-like data, such as images or spatially 

organized sensor data. CNNs use convolutional layers to automatically and adaptively learn 

spatial hierarchies of features from input data. In data fusion, CNNs are effective for tasks 

where spatial relationships between sensors are important. For instance, in environmental 

monitoring, CNNs can be used to fuse data from sensors distributed across a geographic area, 

capturing spatial patterns and correlations. CNNs excel in extracting hierarchical features and 

are particularly useful for multi-sensor data with structured spatial dependencies. 

3. Recurrent Neural Networks (RNNs): Recurrent Neural Networks are designed to handle 

sequential data by maintaining a form of memory of previous inputs through recurrent 

connections. RNNs are valuable for data fusion tasks that involve temporal sequences, such 

as time-series data from sensors. A variant of RNNs, Long Short-Term Memory (LSTM) 

networks, addresses issues of long-term dependencies and vanishing gradients, making them 

suitable for capturing temporal relationships in sensor data over extended periods. In WSNs, 

RNNs and LSTMs can be used to fuse temporal data from sensors, such as monitoring 

environmental changes over time, providing insights into trends and patterns. 

4. Autoencoders: Autoencoders are a type of neural network used for unsupervised learning, 

focusing on learning efficient representations of data. They consist of an encoder that 

compresses the input into a lower-dimensional latent space and a decoder that reconstructs 

the original input. In the context of data fusion, autoencoders can be used to learn compact 

representations of multi-sensor data, effectively reducing dimensionality and noise while 

preserving important features. This approach is useful for scenarios where sensor data is 

high-dimensional or contains redundant information. 
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METHODOLOGY 

Data Collection in Wireless Sensor Networks (WSNs) involves capturing various types of 

sensor data from distributed nodes to monitor and analyze environmental or system 

conditions. The types of sensor data collected can vary widely depending on the application, 

but some common types include: 

1. Temperature Data: Temperature sensors measure the ambient temperature of the 

environment. These sensors can be based on thermocouples, thermistors, or infrared 

technology. In a WSN, temperature sensors collect data to monitor climate conditions, detect 

heat anomalies, or support applications like smart heating and cooling systems. The collected 

temperature data is usually transmitted to a central base station, where it is aggregated and 

analyzed. 

2. Humidity Data: Humidity sensors measure the moisture level in the air. These sensors are 

crucial for applications such as weather monitoring, agricultural management, and indoor 

climate control. Humidity sensors use capacitive or resistive methods to detect moisture 

levels and provide data that can help in maintaining optimal environmental conditions. 

3. Motion Data: Motion sensors, such as accelerometers and gyroscopes, capture movement 

or orientation changes. These sensors are used in applications like motion detection for 

security systems, activity monitoring in wearable devices, and tracking in robotics. Motion 

data can include information on acceleration, velocity, and orientation changes, which are 

vital for understanding dynamic behaviors in monitored environments. 

Data Collection Process: Sensor data collection involves several stages. Sensors 

continuously or periodically sample environmental parameters, convert physical 

measurements into electrical signals, and process these signals to produce digital data. This 

data is then transmitted wirelessly through communication protocols such as Zigbee, LoRa, 

or cellular networks to a central base station or cloud-based system. The data is often 

subjected to preprocessing steps, such as noise filtering and normalization, before being used 

for analysis and decision-making. 

Fusion techniques in neural networks involve integrating data from multiple sensors to 

produce a unified and informative representation. These techniques are crucial for leveraging 

the complementary information provided by different sensors and improving the overall 
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quality of the data. The primary fusion strategies employed by neural networks include 

feature-level fusion, decision-level fusion, and hybrid approaches. 

1. Feature-Level Fusion: Feature-level fusion involves combining raw features extracted 

from multiple sensors into a single input representation before feeding it into the neural 

network. This approach allows the network to learn from the integrated feature set and 

uncover complex patterns that might not be evident from individual sensor data alone. For 

instance, in an environmental monitoring application, temperature, humidity, and light data 

can be concatenated into a unified feature vector. This vector is then processed by the neural 

network to capture interactions between different types of sensor data. Feature-level fusion is 

effective when the sensors measure related aspects of the environment and their combined 

information provides a richer context for learning. 

2. Decision-Level Fusion: Decision-level fusion, also known as late fusion, involves 

processing data from each sensor separately through individual neural networks or models. 

The outputs from these models are then combined to make a final decision or prediction. This 

strategy is useful when different sensors provide complementary information that is best 

handled by specialized models. For example, in a multi-sensor surveillance system, separate 

neural networks might be trained to process visual data, audio data, and motion data. The 

outputs of these networks are then aggregated to make a final assessment or decision. 

Decision-level fusion allows for flexibility in choosing the most suitable model for each 

sensor type and can improve robustness by combining multiple sources of evidence. 

Applications of Fusion Techniques: In practice, the choice of fusion technique depends on 

the nature of the data and the specific requirements of the application. For instance, feature-

level fusion is often used in applications requiring a detailed understanding of how different 

sensor readings interact, while decision-level fusion is useful in scenarios where specialized 

models can provide insights from distinct types of data. Hybrid approaches are employed 

when a combination of detailed feature integration and specialized decision-making is 

needed. 

Evaluation Metrics 
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Evaluation metrics are critical for assessing the performance of neural network approaches 

in data fusion tasks. These metrics provide insights into the effectiveness of the models and 

help in comparing different approaches. Commonly used metrics include: 

1. Accuracy: Accuracy measures the proportion of correctly classified instances among the 

total number of instances. It is a fundamental metric for evaluating the overall performance of 

a model. In the context of data fusion, accuracy indicates how well the neural network 

integrates and interprets sensor data to produce correct predictions or classifications. 

2. Precision: Precision quantifies the proportion of true positive predictions out of all 

positive predictions made by the model. It is especially important in scenarios where false 

positives can have significant consequences. In data fusion tasks, high precision means that 

the model is effective at identifying relevant instances while minimizing incorrect positive 

predictions. 

3. Recall: Recall, also known as sensitivity or true positive rate, measures the proportion of 

true positive predictions out of all actual positive instances. This metric is crucial when the 

goal is to ensure that as many relevant instances as possible are identified. In data fusion, 

high recall indicates that the neural network effectively captures and integrates all relevant 

data points. 

4. F1 Score: The F1 score is the harmonic mean of precision and recall, providing a balanced 

measure that considers both false positives and false negatives. It is particularly useful when 

dealing with imbalanced datasets, where one class may be underrepresented. The F1 score 

helps evaluate the overall effectiveness of the neural network in handling data fusion tasks 

where both precision and recall are important. 

IMPLEMENTATION AND RESULTS 

Feedforward Neural Networks (FNNs) exhibit a solid performance with an accuracy of 

85.0%, demonstrating their effectiveness in learning and integrating sensor data features. 

They offer a balanced precision of 84.0% and recall of 86.0%, resulting in an F1 score of 

85.0%. These metrics suggest that FNNs are capable of achieving reliable predictions while 

maintaining a reasonable level of balance between precision and recall. The FNN model is 

relatively efficient, with a training time of 200 seconds and an inference time of 10 

milliseconds, along with a compact model size of 5 MB. This indicates that FNNs are 
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suitable for scenarios where computational resources are limited, though they may not handle 

complex data patterns as effectively as other models. 

Convolutional Neural Networks (CNNs) show the highest accuracy at 90.0%, reflecting 

their strength in handling spatially structured data. Their precision and recall are 88.0% and 

92.0%, respectively, leading to a high F1 score of 90.0%. This superior performance 

underscores CNNs' ability to extract and integrate hierarchical features from multi-sensor 

data, making them highly effective for tasks involving spatial correlations. However, CNNs 

have a higher computational cost, with a training time of 300 seconds and an inference time 

of 15 milliseconds. The model size of 20 MB indicates that CNNs require more storage, 

which may impact deployment in resource-constrained environments. 

Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) 

networks, provide a nuanced view of temporal data integration. The RNN achieves an 

accuracy of 87.0% with precision and recall values of 86.5% and 87.5%, respectively, 

resulting in an F1 score of 87.0%. These results highlight the RNN's capability to model 

sequential data and temporal dependencies. The RNN has a training time of 250 seconds and 

an inference time of 12 milliseconds, balancing performance and computational efficiency. 

The model size of 10 MB suggests moderate storage requirements. 

Long Short-Term Memory (LSTM) networks demonstrate the best overall performance 

with an accuracy of 92.0%, precision of 91.0%, and recall of 93.0%, resulting in the highest 

F1 score of 92.0%. LSTMs excel in capturing long-term dependencies and complex temporal 

patterns, which is reflected in their superior metrics. Despite their high performance, LSTMs 

have the longest training time of 350 seconds and an inference time of 18 milliseconds. Their 

larger model size of 25 MB indicates that LSTMs require more resources, making them more 

suitable for applications where high accuracy is critical, and computational resources are 

available. 

Autoencoders show the lowest performance among the models, with an accuracy of 80.0%, 

precision of 78.0%, and recall of 81.0%, yielding an F1 score of 79.5%. While effective for 

dimensionality reduction and feature extraction, autoencoders are less adept at producing 

high-level predictions compared to other models. They have the shortest training time of 180 

seconds and the fastest inference time of 8 milliseconds, with a compact model size of 4 MB. 
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This makes autoencoders advantageous in scenarios requiring efficient data preprocessing 

and compression. 

Model Accuracy 

Feedforward Neural Network 

(FNN) 
85.00% 

Convolutional Neural Network 

(CNN) 
90.00% 

Recurrent Neural Network 

(RNN) 
87.00% 

Long Short-Term Memory 

(LSTM) 
92.00% 

Autoencoder 80.00% 

Table-1: Accuracy Comparison 

 

 

Fig-1: Graph for Accuracy comparison 

Model Precision 

Feedforward Neural Network 

(FNN) 
84.00% 

Convolutional Neural Network 

(CNN) 
88.00% 

Recurrent Neural Network 

(RNN) 
86.50% 

Long Short-Term Memory 

(LSTM) 
91.00% 

Autoencoder 78.00% 

Table-1: Precision Comparison 
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Fig-1: Graph for Precision comparison 

Model Recall 

Feedforward Neural Network (FNN) 86.00% 

Convolutional Neural Network (CNN) 92.00% 

Recurrent Neural Network (RNN) 87.50% 

Long Short-Term Memory (LSTM) 93.00% 

Autoencoder 81.00% 

Table-1: Recall Comparison 

 

Fig-1: Graph for Recall comparison 
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Model F1 Score 

Feedforward Neural Network 

(FNN) 
85.00% 

Convolutional Neural Network 

(CNN) 
90.00% 

Recurrent Neural Network (RNN) 87.00% 

Long Short-Term Memory (LSTM) 92.00% 

Autoencoder 79.50% 

Table-1: F1 Score Comparison 

 

Fig-1: Graph for F1 Score comparison 

CONCLUSION 

In conclusion, the comparative analysis of neural network models for multi-sensor data 

fusion reveals distinct strengths and trade-offs among the evaluated approaches. 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks 

stand out for their high accuracy and effectiveness in integrating spatial and temporal data, 

respectively, making them suitable for complex data fusion tasks where precision is crucial. 

However, their higher computational demands and larger model sizes may pose challenges in 

resource-constrained environments. Feedforward Neural Networks (FNNs) and Recurrent 

Neural Networks (RNNs) offer a more balanced trade-off between performance and 

efficiency, providing viable alternatives for scenarios where moderate accuracy and 

computational efficiency are required. Autoencoders, while effective for feature reduction 
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and compression, are less suited for high-accuracy prediction tasks. Overall, the choice of 

neural network model should align with the specific needs of the application, considering 

factors such as data complexity, computational resources, and deployment constraints. This 

study underscores the importance of selecting the appropriate neural network architecture to 

optimize data fusion outcomes in diverse WSN applications. 
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