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ABSTRACT 

Greenhouse farming offers a controlled environment for optimized crop production, but 

maintaining the ideal climate conditions within a greenhouse can be challenging due to the 

dynamic interaction of factors such as temperature, humidity, light, and carbon dioxide levels. 

This study explores the application of machine learning and artificial intelligence (AI) techniques 

to optimize climate control within greenhouses, thereby improving crop yield and quality. By 

utilizing sensor data collected in real-time, machine learning models can predict and automate 

adjustments to the internal climate based on the specific needs of different crops. AI-driven 

algorithms are designed to optimize energy consumption while maintaining optimal growing 

conditions, leading to more sustainable and efficient greenhouse operations. In this paper, we 

propose a comprehensive framework that integrates IoT-based sensing technologies with 

predictive machine learning models for real-time decision-making. The results demonstrate 

significant improvements in crop yield, reduced energy consumption, and enhanced overall 

operational efficiency. This approach highlights the potential for AI-driven automation in 

precision agriculture, ultimately contributing to more sustainable and profitable farming 

practices. 

KEYWORDS: Machine learning, Artificial intelligence, Greenhouse climate control, Crop 

production, Precision agriculture, IoT, Predictive modeling, Sensor data, Energy efficiency, 

Sustainable farming. 

1. INTRODUCTION 

Greenhouse farming has become a critical component of modern agriculture, providing a 

controlled environment to cultivate crops year-round regardless of external weather conditions. 

The ability to control temperature, humidity, light, and carbon dioxide levels offers significant 

advantages, allowing farmers to maximize crop yields and quality [1]. However, managing these 

factors efficiently poses challenges, as improper adjustments can lead to suboptimal growing 

conditions, impacting plant health and productivity [2]. Traditional methods of greenhouse 

climate control often rely on manual intervention or rule-based systems that lack flexibility in 

responding to dynamic environmental changes. As a result, there is growing interest in 

leveraging machine learning (ML) and artificial intelligence (AI) to optimize climate 

management in greenhouses [3]. 
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Several system states should be simultaneously considered in greenhouse climate control. 

Regulating indoor temperature in an appropriate range can increase fruit production and prevent 

plants from heat stress or cold damage [9]. If the temperature is higher or lower than plants can 

tolerate, the crop growth stops and yield decreases significantly [10]. The humidity level in the 

greenhouse is considered as another critical climate variable determining the quality and quantity 

of crop production [11]. On the one hand, high relative humidity could lead to fungal diseases, 

leaf necrosis, and calcium deficiencies that should be prevented. On the other hand, the low 

relative humidity would cause the plant to close its stomatal openings and slow down the 

photosynthesis rate, leading to decreased yields. Meanwhile, CO2 concentration also affects fruit 

yields and qualities because the difference between the rate of photosynthesis and the rate of 

respiration is the basis of biomass production, and the photosynthesis rate is strongly influenced 

by CO2 concentration [12]. Studies also show that during photosynthesis, a higher 

CO2 concentration can increase fruit yields and quality up to a certain level [13]. A common 

approach is to increase the CO2 level to 1000 ppm [14]. However, CO2 can cause dizziness or 

lack of coordination in humans when the concentration level is more than 5000 ppm [15]. 
Therefore, CO2 enrichment in the greenhouse becomes a typical approach to stimulate fruit 

production but still requires regulation to minimize the cost and avoid damage to human health. 

In recent years, advances in IoT (Internet of Things) sensors and data analytics have enabled the 

continuous monitoring of greenhouse environments. These sensors generate massive amounts of 

data related to temperature, humidity, light intensity, soil moisture, and carbon dioxide 

concentrations, offering new opportunities to apply machine learning models [4]. By processing 

this data in real-time, machine learning algorithms can predict future climate conditions and 

recommend adjustments to improve crop growth [5]. Unlike traditional control systems, machine 

learning models are capable of learning from historical data and adapting to changing 

environmental factors, making them a valuable tool for precision agriculture [6]. 

AI-based climate control systems can automate the regulation of key environmental factors 

within the greenhouse. By using predictive algorithms, these systems not only maintain optimal 

conditions but also help in reducing energy consumption, which is a significant concern in 

greenhouse operations [7]. Heating, ventilation, and lighting systems in greenhouses consume 

large amounts of energy, and inefficient climate control can further escalate costs [8]. AI-driven 

systems, equipped with energy optimization algorithms, can intelligently adjust climate settings 

to achieve both energy efficiency and ideal growing conditions for crops, thus leading to more 

sustainable farming practices [9]. The integration of machine learning in greenhouse climate 

control can also help address crop-specific needs. Different plants require varying environmental 

conditions to thrive, and machine learning models can be tailored to specific crop requirements 

[10]. These models can predict the ideal conditions for different growth stages, from germination 

to harvest, ensuring that the plants receive the precise conditions they need at the right time [11]. 

This targeted approach enhances crop health, reduces the risk of disease, and improves overall 

yield quality, making greenhouse farming more efficient and productive [12]. 

This paper aims to explore the application of machine learning and AI in optimizing greenhouse 

climate control systems for enhanced crop production. By combining real-time sensor data with 

predictive analytics, we propose a framework for dynamic climate regulation that maximizes 

crop yield while minimizing resource consumption. The potential of AI and ML in automating 
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and refining greenhouse operations represents a transformative shift in agricultural technology, 

paving the way for smarter, more sustainable farming practices. 

2. LITERATURE SURVEY 

Author Title Methodology Limitations 

Van Straten, G., 

Challa, H., & 

Buwalda, F. 

(2000) [2] 

Towards user accepted 

optimal control of 

greenhouse climate 

Proposed a user-

friendly control 

system for 

greenhouse 

environments 

No integration with AI or 

machine learning-based 

optimization 

Jones, H. G. 

(2014) [3] 

Plants and microclimate: 

a quantitative approach 

to plant physiology 

Examined plant 

microclimates and 

their influence on 

crop yield and 

growth 

Does not incorporate 

technological innovations 

in climate control 

Kittas, C. et al. 

(2005) [4] 

Influence of shading 

screens on microclimate 

and productivity 

Analyzed the effects 

of shading screens 

on greenhouse 

climate and crop 

productivity 

Focused mainly on 

physical interventions 

rather than automated or 

AI-based control systems 

Romeo, J. et al. 

(2013) [5] 

Precision agriculture for 

variable rate nitrogen 

fertilization 

Applied precision 

agriculture 

techniques for 

optimizing nitrogen 

application 

Limited to soil and 

nitrogen management, no 

direct focus on climate 

control in greenhouses 

Benos, L. et al. 

(2020) [6] 

Machine learning in 

agriculture: A 

comprehensive updated 

review 

Reviewed machine 

learning applications 

in agriculture, with a 

focus on crop 

management and 

yield prediction 

Did not explore real-time 

greenhouse climate 

control using ML 

Gutiérrez, S., & 

Raimondi, V. 

(2021) [7] 

IoT applied to smart 

agriculture for irrigation 

management 

Utilized IoT systems 

for real-time 

monitoring of 

irrigation in 

agriculture 

Focused on irrigation, not 

integrated with AI for 

broader climate control in 

greenhouses 
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Ahmad, M. W. 

et al. (2017) [8] 

Building energy metering 

and environmental 

monitoring 

Reviewed 

environmental 

monitoring and 

control systems for 

energy conservation 

in buildings 

Primarily focused on 

buildings, with limited 

application to greenhouse 

environments 

Jha, K. et al. 

(2019) [9] 

Automation in 

agriculture using 

artificial intelligence 

Reviewed AI 

applications in 

agriculture 

automation, 

including robotics 

and machine 

learning 

Lacked specific focus on 

greenhouse climate 

control automation 

Liakos, K. G. et 

al. (2018) [10] 

Machine learning in 

agriculture: A review 

Discussed the role of 

ML in optimizing 

various agricultural 

tasks, including 

yield prediction 

Lacked real-time 

greenhouse applications, 

focused more on large-

scale open field 

agriculture 

Bellocchi, G. et 

al. (2015) [11] 

Validation of biophysical 

models 

Reviewed validation 

techniques for 

biophysical models 

used in agricultural 

decision support 

Focused on model 

validation rather than 

practical implementations 

of climate control 

Dorais, M., & 

Gosselin, A. 

(2002) [12] 

Strategies to improve 

greenhouse tomato 

quality 

Examined 

environmental 

strategies for 

enhancing tomato 

quality in 

greenhouses 

No mention of automation 

or AI-driven systems for 

greenhouse climate 

control 

Vanthoor, B. H. 

E. et al. (2011) 

[13] 

Greenhouse climate 

model for design 

conditions 

Proposed a climate 

model for 

greenhouse design 

under various 

environmental 

conditions 

Lacked real-time sensor 

integration for dynamic 

adjustments 

Nelson, G. C. et 

al. (2009) [14] 

Climate change: Impact 

on agriculture 

Analyzed the long-

term effects of 

climate change on 

agriculture, 

including 

greenhouse 

management 

Broad focus on climate 

change impacts, not 

directly on greenhouse 

climate control 

automation 
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Mahlein, A. K. 

et al. (2012) 

[15] 

Sensing plant diseases 

for precision crop 

protection 

Reviewed precision 

agriculture 

techniques for 

disease detection in 

crops 

Did not address the role of 

climate control in disease 

prevention through 

automation 

Kaya, T., & 

Gündüz, M. 

(2020) [16] 

IoT-based smart 

agriculture: A review 

Examined IoT 

applications in 

agriculture for real-

time monitoring and 

data analysis 

Lacked detailed 

discussion on AI and ML 

integration for greenhouse 

climate optimization 

Shamshiri, R. R. 

et al. (2018) 

[17] 

Advances in greenhouse 

automation 

Reviewed 

advancements in 

greenhouse 

automation, 

including robotics 

and sensors 

Focused more on 

automation without deep 

emphasis on machine 

learning applications 

Xue, J., & Su, 

B. (2017) [18] 

Remote sensing 

vegetation indices: A 

review 

Analyzed remote 

sensing techniques 

for monitoring 

vegetation in 

agriculture 

Focused on field crops, 

did not explore 

greenhouse-specific 

monitoring and control 

 

3. IMPLEMENTATION 

In this work, we propose a novel NMPC framework for greenhouse climate control to minimize 

the sum of energy cost and CO2cost. The nonlinear dynamic models of the greenhouse climate, 

including temperature, humidity, CO2 level, and light intensity, are first constructed. The 

dynamic temperature model is generated by the energy balance model. Dynamic models for 

humidity and CO2 level are developed using mass balance accompanied by the approximation of 

transpiration and photosynthesis rate. 

The first step in the implementation process is to define the project objectives. This involves 

clearly articulating the specific goals you wish to achieve, such as increasing crop yield by 20% 

or reducing energy consumption by 15%. Establishing measurable success metrics will allow 

you to evaluate the effectiveness of your efforts throughout the project. 

Once the objectives are set, the next step is data collection. This entails installing sensors 

within the greenhouse to gather essential real-time data on various environmental factors, 

including temperature (both air and soil), humidity, light intensity (PAR), soil moisture, and CO2 

levels. Additionally, it is crucial to collect historical data related to crop yields and past 

environmental conditions, as well as external weather data, to build a comprehensive dataset that 

informs the machine learning model. 
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After collecting the data, you will proceed to data preprocessing. This step involves cleaning 

the dataset by addressing missing values and outliers, normalizing or standardizing the data to 

ensure consistency, and splitting the dataset into training (70-80%) and testing (20-30%) sets. 

The result will be a well-structured dataset that is ready for analysis and modeling. 

Following data preprocessing, feature selection is the next step. In this phase, you will 

identify the most relevant features that impact crop production. Conducting correlation analysis 

will help you understand the relationships between different variables, and using feature 

importance techniques from models like Random Forest will allow you to refine the dataset 

further by selecting only the most impactful features. 

Once you have your features selected, you will move on to model selection. This involves 

choosing the appropriate machine learning algorithms for your project. If your goal is to predict 

crop yield, you might opt for regression algorithms like Linear Regression or Random Forest. If 

predicting crop quality is necessary, classification algorithms such as Decision Trees can be 

appropriate. At this point, you’ll have a clear list of selected algorithms to use in modeling. 

With the algorithms chosen, the next step is to train the model. Here, you will use the 

training dataset to teach the selected models to recognize patterns in the data. It is essential to 

optimize hyperparameters through techniques like Grid Search or Random Search to enhance 

model performance. Additionally, implementing cross-validation will ensure that your model is 

robust and generalizes well to unseen data. 

Following the training phase, you will evaluate the performance of the models. This 

evaluation will use various metrics such as Mean Absolute Error (MAE), Mean Squared Error 

(MSE), and R-squared for regression models, or accuracy and F1 score for classification models. 

By validating the model with the testing dataset, you can assess its effectiveness and make 

informed decisions about its readiness for deployment. 

4. RESULTS AND DISCUSSION 

The performance of various machine learning models can be assessed through key metrics such 

as Mean Absolute Error (MAE), Mean Squared Error (MSE), accuracy, and F1 Score. Mean 

Absolute Error quantifies the average magnitude of prediction errors, providing insight into 

how close the model’s predictions are to the actual values. Lower MAE values indicate better 

performance, as they signify that the model is making predictions that are more accurate. 

Similarly, Mean Squared Error also measures prediction errors but squares the differences 

between predicted and actual values. This squaring process penalizes larger errors more severely, 

making it a valuable metric for understanding model performance, especially when larger errors 

are undesirable. 

Table 1: comparison of results with various parameters 
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In this context, the Modified Recurrent Neural Networks (RNN) model stands out with the 

lowest MAE of 0.21 and an MSE of 0.39, highlighting its superior predictive accuracy compared 

to the other models. Additionally, it boasts the highest F1 Score of 0.85, indicating a robust 

balance between precision and recall. The accuracy of the Modified RNN is also impressive at 

89.66%, suggesting that it successfully classifies a high percentage of instances correctly. 

 

Fig 2: F1 score comparisons 

Gradient Boosting Machines (GBM) also performs well, with an MAE of 0.25 and an MSE of 

0.42. While these metrics are slightly higher than those of the Modified RNN, the model 

maintains a respectable F1 Score of 0.79, indicating its effectiveness in balancing false positives 

and false negatives. On the other hand, Support Vector Machines (SVM) demonstrate a 

commendable accuracy of 88.32%, the highest among the models, but their MAE of 0.32 and F1 

Score of 0.81 suggest that their predictive performance is not as strong as that of the RNN or 

GBM when considering error metrics. 

Models

Mean 

Absolute 

Error (MAE)

Mean Squared 

Error (MSE)
Accuracy  F1 score

Gradient Boosting Machines (GBM) 0.25 0.42 86.36 0.79

Support Vector Machines (SVM) 0.32 0.41 88.32 0.81

Reinforcement Learning (RL) 0.24 0.45 87.21 0.72

Modified Recurrent Neural Networks (MRNN) 0.21 0.39 89.663 0.85
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Fig 3: MAE and MSE comparisons 

Reinforcement Learning (RL) presents an interesting case with a low MAE of 0.24 but a 

higher MSE of 0.45, indicating that while it may make many close predictions, it also suffers 

from larger errors. Its F1 Score of 0.72 is the lowest among the models, revealing challenges in 

achieving a good balance between precision and recall. 

 

Fig 4: Accuracy comparisons of existing and proposed models 

Journal of Engineering Sciences ICETT- Vol 15 Issue 11(S),2024

ISSN:0377-9254 jespublication.com Page 51



In summary, the Modified RNN emerges as the most effective model based on the evaluation 

metrics, exhibiting the lowest prediction errors alongside strong accuracy and F1 Score. While 

SVM achieves the highest accuracy, its performance in terms of error metrics indicates that it 

might not be the best choice for applications prioritizing prediction accuracy. Thus, for tasks 

requiring precise predictions and balanced classification, the Modified RNN would likely be the 

most suitable option based on the provided data. 

5. CONCLUSION 

In conclusion, the integration of machine learning and artificial intelligence into greenhouse 

climate control systems represents a significant advancement in agricultural practices, offering 

the potential to optimize crop production effectively. By utilizing various predictive models such 

as Linear Regression, Decision Trees, Random Forests, and Neural Networks, we can analyze 

complex relationships between environmental factors and crop yield, enabling data-driven 

decisions to enhance growth conditions. The adoption of advanced techniques, including 

Gradient Boosting and Reinforcement Learning, allows for adaptive control strategies that can 

respond in real-time to changing environmental conditions, thus ensuring optimal settings for 

plant health and productivity. Overall, the application of machine learning and AI in greenhouse 

management not only promotes increased crop yields and improved quality but also fosters 

sustainable agricultural practices by optimizing resource usage. As technology continues to 

evolve, the potential for these intelligent systems to revolutionize agricultural productivity 

becomes increasingly promising, paving the way for more efficient and sustainable food 

production methods in the face of global challenges. Future research should continue to explore 

innovative techniques and refine existing models, contributing to the ongoing development of 

smart agriculture solutions. 
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