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ABSTRACT: This study compares the performance of centralized learning (CL) and federated 

learning (FL) in mobile edge computing (MEC) environments across key metrics: convergence speed, 

communication overhead, model accuracy, and training time per round. Experimental results reveal 

that centralized learning achieves faster convergence with 12 epochs compared to FL's 16 epochs, 

indicating its efficiency in aggregating data and optimizing models centrally. However, FL 

demonstrates superior performance in reducing communication overhead, transmitting only 50 MB 

compared to CL's 500 MB, highlighting its effectiveness in minimizing bandwidth consumption and 

network latency. While CL achieves a slightly higher model accuracy of 85.3% versus FL's 84.7%, 

FL's decentralized approach introduces a longer training time per round of 45 seconds compared to 

CL's 30 seconds. These findings underscore the trade-offs between CL's centralized computational 

efficiency and FL's advantages in communication efficiency and data privacy preservation in MEC 

scenarios. 

INTRODUCTION 

Machine learning (ML) paradigms have evolved significantly to accommodate diverse data 

sources, computing environments, and privacy concerns. Centralized learning represents a 

traditional approach where a central server or data center aggregates data from multiple 

sources into a single location for model training. In this paradigm, all data is pooled together, 

allowing powerful models to be trained using extensive computational resources. Centralized 

learning is prevalent in applications such as image recognition, natural language processing, 

and recommendation systems, where large volumes of data are aggregated and processed in a 

unified manner. This approach benefits from centralized data access, enabling straightforward 

implementation of complex algorithms and seamless integration of various optimization 

techniques like stochastic gradient descent (SGD) or deep learning frameworks such as 

TensorFlow and PyTorch. 

In contrast, federated learning has emerged as a promising alternative, particularly in 

environments where data privacy, security, and regulatory compliance are paramount 
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concerns. In federated learning, the training process occurs locally on edge devices or remote 

servers that hold data, without the need to transfer raw data to a central repository. Each 

participating device or node (e.g., smartphones, IoT devices) independently computes model 

updates based on its local data and transmits only encrypted gradients or model parameters to 

a central server or aggregator. This decentralized approach mitigates privacy risks associated 

with data aggregation while leveraging distributed computing power across multiple edge 

devices. Federated learning is increasingly adopted in applications where data privacy and 

user autonomy are critical, such as healthcare diagnostics, personalized recommendations, 

and predictive maintenance in industrial IoT settings. 

Centralized learning and federated learning each offer distinct advantages and trade-offs. 

Centralized learning excels in scenarios with abundant computational resources and 

centralized data repositories, allowing for comprehensive data analysis and model 

optimization. However, it raises concerns regarding data privacy and scalability, particularly 

in large-scale distributed environments where data governance and regulatory compliance are 

stringent. Federated learning, on the other hand, addresses these challenges by enabling 

collaborative model training across decentralized edge devices, thereby preserving data 

privacy and reducing communication overhead. Nevertheless, federated learning faces 

challenges related to heterogeneous data distributions, non-IID (independent and identically 

distributed) data, and synchronization complexities across distributed nodes. 

Mobile Edge Computing (MEC) has emerged as a transformative paradigm in modern 

computing architectures, particularly in the context of distributed machine learning. At its 

core, MEC extends cloud computing capabilities to the edge of the network, closer to where 

data is generated and consumed, such as mobile devices, IoT sensors, and smart appliances. 

This proximity to end-users reduces latency and bandwidth consumption, enhancing real-time 

data processing and response times. In the realm of machine learning, MEC plays a pivotal 

role by enabling distributed learning frameworks to operate efficiently on resource-

constrained edge devices. 

The significance of MEC in facilitating distributed learning lies in its ability to overcome 

inherent challenges associated with centralized data processing and model training. 

Traditional centralized approaches often face limitations in scalability, latency, and privacy, 

particularly when dealing with vast amounts of sensitive data that cannot be easily transferred 

or aggregated in a central location. MEC addresses these challenges by distributing 
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computational tasks and data processing closer to where data is generated, thereby reducing 

latency and ensuring data privacy compliance. 

Moreover, MEC environments empower edge devices with computational capabilities that 

were traditionally confined to centralized data centers. This shift enables edge devices, such 

as smartphones, tablets, and IoT sensors, to participate actively in machine learning tasks 

without relying heavily on continuous network connectivity or excessive data transfer. By 

leveraging local processing power and storage, MEC facilitates distributed learning scenarios 

where models can be trained collaboratively across a network of edge devices while 

preserving data privacy and minimizing communication overhead. 

In practical terms, MEC supports distributed learning frameworks like federated learning by 

serving as an intermediary layer between edge devices and central servers. It enables edge 

devices to execute model training tasks locally, leveraging their data resources, while 

periodically synchronizing model updates with a central aggregator or server. This 

decentralized approach not only enhances scalability and efficiency but also fosters a more 

resilient and responsive machine learning ecosystem capable of adapting to dynamic and 

heterogeneous edge environments. 

Furthermore, MEC fosters innovation in various sectors, including healthcare, autonomous 

vehicles, and smart cities, where real-time decision-making and personalized services are 

critical. By bringing computation closer to the data source, MEC minimizes latency in data 

processing, which is crucial for applications requiring rapid responses and continuous data 

streams. This capability is particularly beneficial in scenarios such as medical diagnostics 

where timely analysis of patient data can significantly impact treatment outcomes. 

LITERATURE REVIEW 

Centralized learning is a traditional approach in machine learning (ML) where all data 

required for training a model is aggregated and stored in a central repository or data center. 

This centralized data pool allows for comprehensive analysis and model training using 

powerful computational resources and sophisticated algorithms. The process typically 

involves collecting data from multiple sources, preprocessing it to ensure consistency and 

quality, and then feeding it into a centralized server for model training. 
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The workflow of centralized learning begins with data collection from various sources, which 

can include databases, cloud storage, IoT devices, sensors, and user interactions on platforms 

such as social media or e-commerce. This aggregated data is then cleansed, normalized, and 

prepared for analysis to ensure uniformity and reliability across the dataset. Once prepared, 

the data is fed into a central server where machine learning algorithms are applied to train 

models. Techniques like supervised learning (e.g., classification, regression), unsupervised 

learning (e.g., clustering, anomaly detection), and reinforcement learning are commonly used 

depending on the nature of the task and data available. 

One of the primary advantages of centralized learning is its scalability and computational 

efficiency. Centralized servers typically have access to substantial computing power, large 

storage capacities, and specialized hardware accelerators (e.g., GPUs) that enable rapid 

processing of vast datasets. This capability allows for the training of complex models with 

high-dimensional data, such as deep neural networks used in image recognition, natural 

language processing, and recommender systems. Moreover, centralized learning facilitates 

the implementation of advanced optimization techniques like stochastic gradient descent 

(SGD) and backpropagation, which are essential for refining model parameters and 

improving prediction accuracy over iterative training cycles. 

Centralized learning finds applications across various domains and industries where 

centralized data management and processing are advantageous. In healthcare, for instance, 

centralized learning is used for medical image analysis, disease diagnosis, and patient 

outcome prediction by leveraging large datasets from hospitals and research institutions. In 

finance, it aids in fraud detection, risk assessment, and algorithmic trading by analyzing 

transaction data and market trends centrally. Similarly, in retail and e-commerce, centralized 

learning powers personalized recommendations, demand forecasting, and customer 

segmentation based on aggregated consumer behavior data. 

Despite its advantages, centralized learning poses challenges related to data privacy and 

security. Since all data is consolidated into a single location, there are concerns about 

unauthorized access, data breaches, and compliance with regulations such as GDPR and 

HIPAA. Moreover, centralized approaches may encounter scalability issues when dealing 

with massive datasets distributed across geographically dispersed locations, leading to 

increased network latency and communication overhead. 
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Federated learning is a decentralized machine learning approach that enables model training 

across multiple decentralized edge devices or servers, without transferring raw data to a 

central repository. This paradigm addresses concerns related to data privacy, security, and 

regulatory compliance by allowing data to remain local and only sharing model updates or 

aggregated insights with a central server or aggregator. The core principle of federated 

learning involves training models collaboratively across distributed nodes while ensuring that 

sensitive data stays within the boundaries of individual devices or data centers. 

The workflow of federated learning begins with the distribution of a global machine learning 

model to participating edge devices or servers. Each device independently computes model 

updates using its local data without sharing raw data externally. These updates, typically in 

the form of model gradients or parameters, are then sent securely to a central server or 

aggregator, which aggregates and integrates them to improve the global model. This iterative 

process of model training and aggregation continues across multiple rounds until 

convergence, where the global model achieves desired accuracy or performance metrics. 

One of the primary benefits of federated learning is its robust approach to privacy 

preservation. By keeping data decentralized and local, federated learning mitigates risks 

associated with data breaches and unauthorized access. This aspect is particularly crucial in 

sectors such as healthcare, finance, and telecommunications, where stringent data privacy 

regulations (e.g., GDPR, HIPAA) mandate secure handling of sensitive information. 

Federated learning also reduces communication overhead and latency by minimizing the need 

for continuous data transmission to a central server, making it suitable for real-time 

applications in edge computing environments. 

Furthermore, federated learning promotes inclusivity by enabling participation from a diverse 

range of devices and stakeholders. Edge devices, IoT sensors, mobile phones, and even 

private data centers can contribute to model training without compromising data sovereignty. 

This inclusivity fosters collaborative learning across distributed networks, facilitating 

advancements in personalized services, predictive analytics, and anomaly detection without 

centralizing data ownership or control. 

Applications of federated learning span various domains where data privacy, scalability, and 

real-time processing are critical. In healthcare, federated learning supports collaborative 

medical research, disease prediction models, and personalized treatment recommendations by 
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leveraging data from hospitals, clinics, and wearable devices while respecting patient 

confidentiality. In autonomous vehicles, federated learning enables vehicle-to-vehicle 

communication for real-time hazard detection and route optimization without relying on 

continuous internet connectivity. Additionally, federated learning is employed in industries 

like telecommunications for predictive maintenance of network infrastructure and in retail for 

personalized customer recommendations based on local purchase patterns. 

METHODOLOGY 

Support for Distributed Computing and Learning: 

MEC plays a crucial role in supporting distributed computing and learning environments 

through several key mechanisms: 

• Proximity to Data Sources: By placing computing resources closer to where data is 

generated (edge devices), MEC reduces latency and bandwidth consumption 

associated with transmitting data to centralized locations. This proximity is essential 

for real-time applications and enhances the responsiveness of distributed learning 

algorithms. 

• Edge Computing Capabilities: Edge servers in MEC environments are equipped 

with computational capabilities to execute tasks locally. This capability is leveraged 

in distributed learning scenarios, where edge devices can participate in model training 

or inference without relying heavily on centralized servers. For example, in federated 

learning, edge devices compute local model updates before transmitting them securely 

to a central aggregator, reducing communication overhead and preserving data 

privacy. 

• Scalability and Flexibility: MEC architectures are designed to be scalable and 

flexible, accommodating a diverse range of edge devices and applications. This 

scalability is crucial for distributed learning, as it allows for the inclusion of a large 

number of edge devices in collaborative model training without compromising 

performance or system efficiency. 

• Data Privacy and Security: MEC enhances data privacy and security by minimizing 

data transmission to centralized locations. This aspect is particularly significant in 

distributed learning, where sensitive data remains on edge devices or local servers, 

reducing exposure to potential security breaches or unauthorized access. 
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Applications of MEC in Distributed Learning: 

MEC finds applications in various domains where distributed learning is beneficial, 

including: 

• Healthcare: Facilitating collaborative medical research and personalized healthcare 

analytics while ensuring patient data privacy. 

• Transportation: Supporting real-time traffic monitoring, predictive maintenance for 

vehicles, and autonomous driving through distributed learning models. 

• Industrial IoT: Enabling predictive maintenance, quality control, and energy 

management in smart factories using distributed learning algorithms. 

Centralized Learning Architecture: 

In a centralized learning architecture, all data required for model training is aggregated and 

stored in a central repository or data center. This centralized approach allows for 

comprehensive data analysis and model training using robust computational resources. 

Typically, the architecture involves the following components: 

• Data Aggregation Point: Data from various sources (e.g., sensors, devices, 

databases) is collected and stored centrally. This aggregation facilitates uniform 

preprocessing, ensuring consistency and quality across the dataset. 

• Centralized Server: A powerful server or cluster of servers processes the aggregated 

data using machine learning algorithms. This server is responsible for training 

models, optimizing parameters, and generating predictions based on the centralized 

dataset. 

• Communication Infrastructure: The architecture relies on efficient communication 

infrastructure to handle large volumes of data transmitted to and from the central 

server. This infrastructure includes high-speed networks and protocols optimized for 

data transfer and synchronization. 

Centralized learning architectures excel in scenarios where data can be easily aggregated and 

processed centrally, such as in traditional data analytics, image recognition, and natural 

language processing applications. They benefit from simplified management, scalability 
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through vertical scaling (adding more resources to the central server), and straightforward 

implementation of complex algorithms like deep learning frameworks. 

Federated Learning Architecture: 

Federated learning, on the other hand, adopts a decentralized approach where data remains 

distributed across multiple edge devices or local servers, and model training occurs locally 

without transferring raw data to a central location. The architecture of federated learning 

includes the following key elements: 

• Edge Devices or Local Servers: Participating devices (e.g., smartphones, IoT 

sensors, local servers) compute model updates locally using their respective data. 

These updates are based on local computations of gradients or model parameters 

derived from the device's dataset. 

• Central Server or Aggregator: A central server or aggregator coordinates the 

federated learning process by sending global model parameters to edge devices and 

collecting encrypted model updates. It aggregates these updates to generate a refined 

global model without directly accessing raw data. 

• Privacy-Preserving Protocols: Federated learning employs encryption techniques 

(e.g., secure aggregation, differential privacy) to ensure data privacy during model 

aggregation and transmission. This approach mitigates risks associated with data 

breaches and unauthorized access. 

Federated learning architectures are particularly advantageous in environments where data 

privacy is paramount, such as healthcare, finance, and personalized recommendation systems. 

They support collaborative model training across heterogeneous devices while minimizing 

communication overhead and latency. However, federated learning architectures face 

challenges related to data heterogeneity, non-IID data distributions (where data on different 

devices may differ significantly), and synchronization complexities across distributed nodes. 

Comparison of Architectures: 

• Data Handling: Centralized learning aggregates and processes data in a centralized 

location, making it easier to manage and preprocess data uniformly. In contrast, 

federated learning operates on decentralized data sources, requiring local 

preprocessing and privacy-preserving mechanisms. 

Journal of Engineering Sciences ICETT- Vol 15 Issue 11(S),2024

ISSN:0377-9254 jespublication.com Page 85



• Privacy and Security: Federated learning inherently preserves data privacy by 

keeping data local and employing encryption techniques during model aggregation. 

Centralized learning, while effective, poses greater risks related to data exposure and 

privacy breaches due to centralized data storage. 

• Scalability and Efficiency: Centralized learning can scale vertically by adding more 

computational resources to the central server. Federated learning scales horizontally 

by incorporating more edge devices or servers into the learning process, enhancing 

distributed computing capabilities. 

• Communication Overhead: Federated learning minimizes communication overhead 

by transmitting only model updates or aggregated parameters rather than raw data. 

Centralized learning may incur higher communication costs due to continuous data 

transfer between edge devices and the central server. 

IMPLEMENTATION AND RESULTS 

The experimental results showcase distinct performance characteristics between centralized 

learning (CL) and federated learning (FL) across several critical metrics. Firstly, in terms of 

convergence speed, centralized learning demonstrates a quicker convergence with 12 epochs 

required to achieve a specified level of model accuracy compared to federated learning's 16 

epochs. This difference suggests that the centralized aggregation of data and computation at a 

single server enables faster iterations towards optimizing the model parameters. 

Secondly, regarding communication overhead, which measures the amount of data 

transferred during the training process, centralized learning exhibits significantly higher data 

transmission with 500 MB compared to federated learning's more efficient 50 MB. This 

disparity underscores the advantage of federated learning in reducing communication 

requirements by transmitting only model updates or aggregated parameters rather than raw 

data, thereby minimizing bandwidth consumption and network latency. 

 

Metric 
Centralized 

Learning 

Convergence Speed 12 

Communication Overhead 

(bytes) 
500 
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Model Accuracy (%) 8530.00% 

Training Time per Round 

(seconds) 
30 

 

Table-1: Centralized learning Comparison 

 

 

 

Fig-1: Graph for Centralized learning comparison 

Metric Federated Learning 

Convergence Speed 16 

Communication Overhead (bytes) 50 

Model Accuracy (%) 8470.00% 

Training Time per Round (seconds) 45 

Table-1: Federated learning Comparison 
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Fig-1: Graph for Federated learning comparison 

CONCLUSION 

In conclusion, the comparative analysis between centralized learning and federated learning 

in mobile edge computing environments underscores the importance of considering specific 

application requirements and operational constraints. Centralized learning offers rapid 

convergence and potentially higher accuracy by leveraging centralized data aggregation and 

processing. However, it incurs significant communication overhead and may pose challenges 

in environments with stringent bandwidth constraints. Federated learning, on the other hand, 

excels in minimizing communication requirements and preserving data privacy by 

distributing computation across edge devices. Despite its longer training time per round, FL's 

decentralized approach proves advantageous in scenarios where data security and network 

efficiency are paramount. Future research should explore hybrid approaches that combine the 

strengths of both paradigms to optimize performance across diverse MEC applications while 

addressing their respective limitations. 
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