
IMPLEMENTATION OF MODIFIED VEDIC MULTIPLIER

USING ON QUATERNARY SIGNED DIGIT NUMBER

SYSTEM
1
B DEVIKA RANI,

2
DR S GOVINDARAJULU

1
M.Tech Student,

2
Professor

Department Of ECE

Dr.K.V.Subba Reddy Institute of Technology, Dupadu, Kurnool

ABSTRACT
The multiplier design which is initially

developed for area optimizations is an array

multiplier in which the main disadvantage is the

worst-case delay. To overcome this

disadvantage, many methodologies came into

existence in which Vedic methodology has

acquired prominence because of fast

computations. It has been found that Vedic

multiplier adopting Urdhva Tiryagbhyam is one

of the most effective multipliers with minimum

delay for multiplication of all types of numbers,

either large or small. Though the speed of this

multiplier is high, area occupancy is more. Thus,

Binary to Excess-one Converter (BEC)

technique is employed in this multiplier to

reduce area. To further improve the

performance, a 16 × 16 Vedic multiplier

employing BEC adders and modified logic gates

is developed.

The design doesn’t require a radix

conversion module as the sum is directly

generated in binary using the novel concept of an

adjusting bit. The proposed multiplier design is

compared with a Vedic multiplier based on multi

voltage or multi value logic [MVL], Vedic

Multiplier that incorporates a QSD adder with a

conversion module for quaternary to binary

conversion, Vedic multiplier that uses Carry

Select Adder and a commonly used fast

multiplication mechanism such as Booth

multiplier. All these designs have been

developed using Verilog HDL and synthesized

by Synopsys Design Compiler.

1. INTRODUCTION
 BINARY multipliers are a widely used

building block element in the design of

microprocessors and embedded systems, and

therefore, they are an important target for

implementation optimization. Current

implementations of binary multiplication follow

the steps of :

1) recoding of the multiplier in digits in a certain

number system;

2) digit multiplication of each digit by the

multiplicand, resulting in a certain number of

partial products;

 3) reduction of the partial product array to two

operands using multioperand addition techniques;

4) carry-propagate addition of the two operands

to obtain the final result. The recoding type is a

key issue, since it determines the number of

partial products.

 The usual recoding process recodes a

binary operand into a signed-digit operand with

digits in a minimally redundant digit set.

Specifically, for radix-r (r = 2m), the binary

operand is composed of non-redundant radix-r

digits (by just making groups of m bits), and

these are recoded from the set {0, 1,...,r − 1} to
the set {−r/2,..., −1, 0, 1, . . ., r/2} to reduce the

complexity of digit multiplications. For n-bit

operands, a total of n/m partial products are

generated for two’s complement representation,

and (n + 1)/m for unsigned representation. Radix-

4 modified Booth is a widely used recoding

method, that recodes a binary operand into radix-

4 signed digits in the set {−2, −1, 0, 1, 2}. This is
a popular recoding since the digit multiplication

step to generate the partial products only requires

simple shifts and complementation.

 The resulting number of partial products

is about n/2. Higher radix signed recoding is less

popular because the generation of the partial

products requires odd multiples of the

multiplicand which can not be achieved by means

of simple shifts, but require carry-propagate

additions. For instance, for radix-4signed digit

recoding [9] the digit set is {−8, −7,..., 0,..., 7, 8},
so that some odd multiples of the multiplicand

have to be generated. Specifically, it is required

to generate ×3, ×5, and ×7 multiples (×6 is

obtained by simple shift of ×3). The generation of

each of these odd multiplies requires a two term

addition or subtraction, yielding a total of three

carry-propagate additions.

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 111

2. LITERATURE SURVEY:
 However, the advantage of the high radix

is that the number of partial products is further

reduced. For instance, for radix-4and n-bit

operands, about n/4 partial products are

generated. Although less popular than radix-4,

there exist industrial instances of radix-8. and

radix-4multiplier in microprocessors

implementations. The choice of these radices is

related to area/delay/power optimization of

pipelined multipliers (or fused multiplier adder as

in the case of a Intel Itanium microprocessor), for

balancing delay between stages and/or reduce the

number of pipelining flip-flops.

 A further consideration is that carry-

propagate adders are today highly energy-delay

optimized, while partial product reductions trees

suffer the increasingly serious problems related

to a complex wiring and glitching due to

unbalanced signal paths. It is recognized in the

literature that a radix-8 recoding leads to lower

power multipliers compared to radix-4 recoding

at the cost of higher latency (as a combinational

block, without considering pipelining).

Moreover, although the radix-4multiplier requires

the generation of more odd multiples and has a

more complex wiring for the generation of partial

products, a recent microprocessor design

considered it to be the best choice for low power

(under the specific constraints for this

microprocessor).

 In some optimizations for radix-4 two’s

complement multipliers were introduced.

Although for n-bit operands, a total of n/2 partial

products are generated, the resulting maximum

height of the partial product array is n/2 + 1

elements to be added (in just one of the columns).

This extra height by a single-bit row is due to the

+1 introduced in the bit array to make the two’s

complement of the most significant partial

product (when the recoded most significant digit

of the multiplier is negative). The maximum

column height may determine the delay and

complexity of the reduction tree, authors showed

that this extra column of one bit could be

assimilated (with just a simplified three bit

addition) with the most significant part of the first

partial product without increasing the critical path

of the recoding and partial product generation

stage. The result is that the partial product array

has a maximum height of n/2. This reduction of

one bit in the maximum height might be of

interest for high-performance short-bit width

two’s complement multipliers (small n) with tight

cycle time constraints, that are very common in

SIMD digital signal processing applications.

Moreover, if n is a power of two, the

optimization allows to use only 4-2 carry-save

adders for the reduction tree, potentially leading

to regular layouts. These kind of optimizations

can become particularly important as they may

add flexibility to the “optimal” design of the

pipelined multiplier.

 Optimal pipelining in fact, is a key issue

in current and future multiplier (or multiplier-

add) units: 1) the latency of the pipelined unit is

very important, even for throughput oriented

applications, as it impacts the energy

consumption of the whole core; and 2) the

placement of the pipelining flip-flops should at

the same time minimize total power, due to the

number of flip-flops required and the unbalanced

signal propagation paths. The methods proposed

in were mostly focused on two’s complement

radix-4 Booth multipliers, thus leaving open the

research and extension to higher radices and

unsigned multiplications (for unsigned integer

arithmetic or mantissa times mantissa in a

floating-point unit). For a radix higher than 4, it

is necessary to generate the odd multiples

(usually with adders), resulting in the reduction

of the time slacks necessary to “hide” the

simplified three bit assimilation. Unsigned

multiplication may produce a positive carry out

during recoding (this depends of the value of n

and the radix used for recoding), leading to one

additional row, increasing the maximum height

of the partial product array by one row, not just in

one but in several columns. For all these reasons,

we need to extend the techniques presented.

The challenge of the verifying a large design is

growing exponentially. There is a need to define

new methods that makes functional verification

easy. Several strategies in the recent years have

been proposed to achieve good functional

verification with less effort. Recent advancement

towards this goal is methodologies. The

methodology defines a skeleton over which one

can add flesh and skin to their requirements to

achieve functional verification.

Complex multiplication is of immense

importance in Digital Signal Processing (DSP)

and Image Processing (IP). To implement the

hardware module of Discrete Fourier

Transformation (DFT), Discrete Cosine

Transformation (DCT), Discrete Sine

Transformation (DST) and modem broadband

communications; large numbers of complex

multipliers are required. Complex number

multiplication is performed using four real

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 112

number multiplications and two additions/

subtractions. In real number processing, carry

needs to be propagated from the least significant

bit (LSB) to the most significant bit (MSB) when

binary partial products are added [1]. Therefore,

the addition and subtraction after binary

multiplications limit the overall speed. Many

alternative method had so far been proposed for

complex number multiplication [2-7] like

algebraic transformation based

implementation[2], bit-serial multiplication

using offset binary and distributed arithmetic [3],

the CORDIC (coordinate rotation digital

computer) algorithm [4], the quadratic residue

number system (QRNS) [5], and recently, the

redundant complex number system (RCNS).

Blahut et. al [2] proposed a technique for

complex number multiplication, where the

algebraic transformation was used. This

algebraic transformation saves one real

multiplication, at the expense of three additions

as compared to the direct method

implementation. A left to right array [7] for the

fast multiplication has been reported in 2005,

and the method is not further extended for

complex multiplication. But, all the above

techniques require either large overhead for

pre/postprocessing or long latency. Further many

design issues like as speed, accuracy, design

overhead, power consumption etc., should not be

addressed for fast multiplication [8]. In

algorithmic and structural levels, a lot of

multiplication techniques had been developed to

enhance the efficiency of the multiplier; which

encounters the reduction of the partial products

and/or the methods for their partial products

addition, but the principle behind multiplication

was same in all cases. Vedic Mathematics is the

ancient system of Indian mathematics which has

a unique technique of calculations based on 16

Sutras (Formulae). "Urdhva-tiryakbyham" is a

Sanskrit word means vertically and crosswise

formula is used for smaller number

multiplication. "Nikhilam Navatascaramam

Dasatah" also a Sanskrit term indicating "all

from 9 and last from 10", formula is used for

large number multiplication and subtraction. All

these formulas are adopted from ancient Indian

Vedic Mathematics. In this work we formulate

this mathematics for designing the complex

multiplier architecture in transistor level with

two clear goals in mind such as: i) Simplicity

and modularity multiplications for VLSI

implementations and ii) The elimination of carry

propagation for rapid additions and subtractions.

Mehta et al. [9] have been proposed a multiplier

design using "Urdhva-tiryakbyham" sutras,

which was adopted from the Vedas. The

formulation using this sutra is similar to the

modem array multiplication, which also

indicating the carry propagation issues. A

multiplier design using "Nikhilam

Navatascaramam Dasatah" sutras has been

reported by Tiwari et. al [10] in 2009, but he has

not implemented the hardware module for

multiplication.

Multiplier implementation in the gate level

(FPGA) using Vedic Mathematics has already

been reported but to the best of our knowledge

till date there is no report on transistor level

(ASIC) implementation of such complex

multiplier. By employing the Vedic

mathematics, an N bit complex number

multiplication was transformed into four

multiplications for real and imaginary terms of

the final product. "Nikhilam. Navatascaramam

Dasatah" sutra is used for the multiplication

purpose, with less number of partial products

generation, in comparison with array based

multiplication. When compared with existing

methods such as the direct method or the

strength reduction technique, our approach

resulted not only in simplified arithmetic

operations, but also in a regular arraylike

structure. The multiplier is fully parameterized,

so any configuration of input and output word-

lengths could be elaborated. Transistor level

implementation for perfonnance parameters such

as propagation delay, dynamic leakage power

and dynamic switching power consumption

calculation of the proposed method was

calculated by spice spectre using 90 nm standard

CMOS technology and compared with the other

design like distributed arithmetic[3], parallel

adder based implementation [1] and algebraic

transfonnation[2] based implementation. The

calculated results revealed (16,16)x(16,16)

complex multiplier have propagation delay only

4 ns with 6.5 mW dynamic switching power.

In this paper we report on a novel high speed

complex multiplier design using ancient Indian

Vedic mathematics.

3. VEDIC MULTIPLICATION

ALGORITHMS
Vedic mathematics is part of four Vedas

(books of wisdom). It is part of Sthapatya-

Veda (book on civil engineering and

architecture), which is an upa-veda

(supplement) of Atharva Veda. It covers

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 113

explanation of several modern mathematical

terms including arithmetic, geometry (plane,

co-ordinate), trigonometry, quadratic

equations, factorization and even calculus. His

Holiness Jagadguru Shankaracharya Bharati

Krishna Teerthaji Maharaja (1884-1960)

comprised all this work together and gave its

mathematical explanation while discussing it

for various applications. Swahiji constructed

16 sutras (formulae) and 16 Upa sutras (sub

formulae) after extensive research in Atharva

Veda. Obviously these formulae are not to be

found in present text of Atharva Veda because

these formulae were constructed by Swamiji

himself. Vedic mathematics is not only a

mathematical wonder but also it is logical.

That‟s why VM has such a degree of
eminence which cannot be disapproved. Due

these phenomenal characteristic, VM has

already crossed the boundaries of India and

has become a leading topic of research abroad.

VM deals with several basic as well as

complex mathematical operations. Especially,

methods of basic arithmetic are extremely

simple and powerful.

The word „Vedic‟ is derived from the word

„veda‟ which means the store-house of all

knowledge. Vedic mathematics is mainly

based on 16 Sutras (or aphorisms) dealing with

various branches of mathematics like

arithmetic, algebra, geometry etc. These Sutras

along with their brief meanings are enlisted

below alphabetically.

1) (Anurupye) Shunyamanyat – If one is in

ratio, the other is zero.

2) Chalana-Kalanabyham – Differences and

Similarities.

3) Ekadhikina Purvena – By one more than the

previous One.

4) Ekanyunena Purvena – By one less than the

previous one.

5) Gunakasamuchyah – The factors of the sum

is equal to the sum of the factors.

6) Gunitasamuchyah – The product of the sum

is equal to the sum of the product.

7) Nikhilam Navatashcaramam Dashatah – All

from 9 and last from 10.

 8) Paraavartya Yojayet – Transpose and

adjust.

9) Puranapuranabyham – By the completion or

noncompletion.

10) Sankalana- vyavakalanabhyam – By

addition and by subtraction.

11) Shesanyankena Charamena – The

remainders by the last digit.

12) Shunyam Saamyasamuccaye – When the

sum is the same that sum is zero.

13) Sopaantyadvayamantyam – The ultimate

and twice the penultimate.

14) Urdhva-tiryakbhyam – Vertically and

crosswise.

15) Vyashtisamanstih – Part and Whole.

16) Yaavadunam – Whatever the extent of its

deficiency.

 These methods and ideas can be directly

applied to trigonometry, plain and spherical

geometry, conics, calculus (both differential

and integral), and applied mathematics of

various kinds. As mentioned earlier, all these

Sutras were reconstructed from ancient Vedic

texts early in the last century. Many Sub-sutras

were also discovered at the same time, which

are not discussed here.

The beauty of Vedic mathematics lies in the

fact that it reduces the otherwise cumbersome-

looking calculations in conventional

mathematics to a very simple one. This is so

because the Vedic formulae are claimed to be

based on the natural principles on which the

human mind works. This is a very interesting

field and presents some effective algorithms

which can be applied to various branches of

engineering such as computing and digital

signal processing.

The multiplier architecture can be generally

classified into three categories. First is the

serial multiplier which emphasizes on

hardware and minimum amount of chip area.

Second is parallel multiplier (array and tree)

which carries out high speed mathematical

operations. But the drawback is the relatively

larger chip area consumption. Third is serial-

parallel multiplier which serves as a good

trade-off between the times consuming serial

multiplier and the area consuming parallel

multipliers.

ALGORITHMS OF VEDIC

MATHEMATICS:-

VEDIC MULTIPLICATION
The proposed Vedic multiplier is based on the

Vedic multiplication formulae (Sutras). These

Sutras have been traditionally used for the

multiplication of two numbers in the decimal

number system. In this work, we apply the

same ideas to the binary number system to

make the proposed algorithm compatible with

the digital hardware. Vedic multiplication

based on some algorithms, some are discussed

below:

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 114

Urdhva Tiryakbhyam sutra
The multiplier is based on an algorithm

Urdhva Tiryakbhyam (Vertical & Crosswise)

of ancient Indian Vedic Mathematics. Urdhva

Tiryakbhyam Sutra is a general multiplication

formula applicable to all cases of

multiplication. It literally means “Vertically

and crosswise”. It is based on a novel concept

through which the generation of all partial

products can be done with the concurrent

addition of these partial products. The

parallelism in generation of partial products

and their summation is obtained using

Urdhava Triyakbhyam explained in fig 2.1.

The algorithm can be generalized for n x n bit

number. Since the partial products and their

sums are calculated in parallel, the multiplier

is independent of the clock frequency of the

processor. Thus the multiplier will require the

same amount of time to calculate the product

and hence is independent of the clock

frequency. The net advantage is that it reduces

the need of microprocessors to operate at

increasingly high clock frequencies. While a

higher clock frequency generally results in

increased processing power, its disadvantage is

that it also increases power dissipation which

results in higher device operating

temperatures. By adopting the Vedic

multiplier, microprocessors designers can

easily circumvent these problems to avoid

catastrophic device failures. The processing

power of multiplier can easily be increased by

increasing the input and output data bus widths

since it has a quite a regular structure. Due to

its regular structure, it can be easily layout in a

silicon chip. The Multiplier has the advantage

that as the number of bits increases, gate delay

and area increases very slowly as compared to

other multipliers. Therefore it is time, space

and power efficient. It is demonstrated that this

architecture is quite efficient in terms of

silicon area/speed.

1) Multiplication of two decimal numbers-

325*738
To illustrate this multiplication scheme, let us

consider the multiplication of two decimal

numbers (325 * 738). Line diagram for the

multiplication is shown in Fig.2.2. The digits

on the both sides of the line are multiplied and

added with the carry from the previous step.

This generates one of the bits of the result and

a carry. This carry is added in the next step

and hence the process goes on. If more than

one line are there in one step, all the results are

added to the previous carry. In each step, least

significant bit acts as the result bit and all

other bits act as carry for the next step.

Initially the carry is taken to be zero. To make

the methodology more clear, an alternate

illustration is given with the help of line

diagrams in figure 2.2 where the dots represent

bit „0‟ or „1‟.

Figure.1: Multiplication of two decimal

numbers by Urdhva Tiryakbhyam.

4. PROPOSED METHOD

Any proposed system must be efficient in

terms of power, speed and size as per growing

technology. In early days Vedic mathematics

is based on 16 vedic sutras.By using Vedic

methods the mathematical operations are fast

and the processing speed to perform the

operations can be improved. There has been

many existing binary multipliers which are

efficient.

MULTIPLIER

A binary multiplier [3] can be used in digital

electronics as a electronic circuit,such as in

computers to find the product of two binary

numbers.Carbon-copy of normal

multiplication technique is used by binary

multiplier,the multiplicand is multiplied with

each bit of the multiplier beginning from the

least significant bit.Two half adder(HA)

modules can be used in order to implement a

2-bit binary multiplier.A no of computer

arithmetic calculations can be used to

appliance digital multiplier.Among these

techniques many imply computing a set of

partial products, and then summing the

generated partial products together.Fig. 1,

shows 2x2 binary multiplier.

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 115

Fig. 2. 2x2 Binary Multiplier

A. Ripple Carry Adder(RCA)
In a multiplier number of Full adders are

arranged in a manner to give the results of an

addition operation of n-bit binary

sequence.The input to next Full adder stage is

obtained from the previous carry output of

adder,it repeats until it reaches to the ending

stage.Fig. 2 shows Four bit(RCA) Ripple

Carry Adder [4].

VEDIC MULTIPLIER

The mode used by Vedic multiplier [6] is

Vedic mathematics.By using this technique it

will increase,and consumes fewer hardware

elements.The sutra [6] used by Vedic

multiplier is Urdhva Tiryakbhyam[3] which

means Vertically as well as Crosswise. The

Fig. 3 shows block diagram of 32 bit vedic

multiplier circuit. The2 input bits are separated

into 2 similar parts the vertical and cross

product calculations can be done as shown in

Fig. 3, with inputs A[31:0] and B[31:0].As

shown in the Fig. 3, the 2 adders are used in

the design of intermediate stages of the

addition.The output carry Cout from these two

adders is given as input to another RCA.If bits

are not of equal sizes concatenate them.For 32-

bit Modified Vedic multiplier the outputs of

parallel adder is given to OR gate and of the

size of last RCA is reduced to half. Fig. 3,

shows 32-bit Vedic multiplier.

Fig. 3. 4-Bit Ripple Carry Adder

Fig. 4. 4-Bit Vedic Multiplier

MODIFIED VEDIC MULTIPLIER

In the proposed paper, the two parallel adders

are replaced by CSA [4] for the better

execution of the multiplier architecture. The

recommended modified Vedic multiplication

methodology is done in the following for 4 bit

inputs, A(A3 -A0) and B(B3 -B0) and 8 bit

output S (S7 -S0).

A multiplier of 2 bit is used to calculate

intermediate stage results, and the output is 4

bits. (A3A2)(B3B2) using 2 bit multiplier

generates result: S33S32S31S30

(A3A2)(B1B0) using 2 bit multiplier generates

result: S23S22S21S20 (A1A0)(B3B2) using 2

bit multiplier generates result: S13S12S11S10

(A1A0)(B1B0) using 2 bit multiplier generates

result: S03S02S01S00

Fig. 5. Modified 4 Bit Vedic Multiplier

The 4 bit CSA Carry Save Adder [4] is used to

add three 4 bit data inputs: S23S22S21S20,

S13S12S11S10 and S31S30 S03 S02. The

proposed 4 bit modified Vedic multiplier [7] is

designed and the Fig. 4 shows it. The last two

MSBs of CSA outputs are given as inputs to

OR gate. In addition, the last stage 4 bit RCA

is replaced by 2 bit adder circuit through

which the output value of OR gate can be

controlled. One of the input to last stage 2-bit

adder[6] is obtaining from the output of or

gate. Similarly, a 4 bit RCA block is a must

needed for 8 bit vedic multiplication design.

Fig. 5, shows 32 bit modified Vedic multiplier.

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 116

Fig. 6. Modified 32 Bit Vedic Multiplier

5. EXTENSION

One of the primary features that help us

determine the computational power of a

processor is the speed of its arithmetic unit. An

important function of an arithmetic block is

multiplication because, in most mathematical

computations, it forms the bulk of the

execution time. Thus, the development of a

fast multiplier has been a key research area for

a long time. Some of the important algorithms

proposed for fast multiplication in literature

are Array, Booth and Wallace multipliers [1]-

[5]. Vedic Mathematics [6, 7] is a

methodology of arithmetic rules that allows for

more efficient implementations regarding

speed. Multiplication in this methodology

consists of three steps: generation of partial

products, reduction of partial products, and

finally carrypropagate addition. Multiplier

design based on Vedic mathematics has many

advantages as the partial products and sums

are generated in one step, which reduces the

carry propagation from LSB to MSB. This

feature helps in scaling the design for larger

inputs without proportionally increasing the

propagation delay as all smaller blocks of the

design work concurrently. References [8], [9]

and [11] compared Vedic Multiplier with other

multiplier architectures namely Booth, Array

and Wallace on the basis of delay and power

consumption. Vedic multiplier showed

improvements in both the parameters over

other architectures. Thus, many

implementations of multiplication algorithms

based on Vedic sutras have been reported in

literature [10]-[12]. Vedic multiplier schemes

proposed in literature are based on Urdhva

Tiryagbhyam and Nikhilam sutras of Vedic

Mathematics. As Nikhilam sutra is only

efficient for inputs that are close to the power

of 10, in this paper a design to perform high-

speed multiplication based on the Urdhva

Tiryagbhyam sutra of Vedic Mathematics

which is generalized method for all numbers,

has been presented. The final step, carry-

propagate addition, requires a fast adder

scheme because it forms a part of the critical

path. A variety of adder schemes have been

proposed in literature to optimize the

performance of Vedic multiplier [13]. Adder

based on QSD shows an improvement in speed

over other state of the art adders [14, 15].

Earlier implementations of QSD adder were

based on Multi Voltage or Multi Value Logic

(MVL) [16]. The difficulty in application of

quaternary addition outside MVL (Multi

Voltage logic) is that, the adder is only a small

unit of the design whose outputs will needed to

be converted back to binary for further

processing. However, use of a conversion

module undermines the advantages gained in

speed by using QSD. In this paper, a novel

implementation of an adder based on QSD is

proposed, which reduces the carry propagation

delay in the design by making use of carry free

arithmetic. The proposed adder design works

on a hybrid of binary and quaternary number

systems wherein the sum is directly generated

in binary using the concept of an adjusting bit,

eliminating the conversion module. The design

can be scaled to larger bit implementations

such as 32, 64, 128 or more with minimal

increase in propagation delay owing to the

parallelism prevalent in the design. We have

compared our design with a Vedic multiplier

based on MVL logic that uses a ripple carry

adder [16], Vedic Multiplier that incorporates

a QSD adder and a conversion module for

quaternary to binary conversion, Vedic

multiplier that uses state of the art fast adder

scheme such as Carry select adder [17] and a

commonly used fast multiplication mechanism

such as Booth multiplier [18], to prove the

feasibility of our design across important

comparison points.

Quaternary Signed Digit (QSD number

system)

The QSD is a radix-4 number system that

provides the benefit of faster arithmetic

calculations over binary computation, as it

eliminates rippling of carry during addition.

Every number in QSD can be represented

using digits from the set {-3,-2,-1, 0, 1, 2, 3}.

Being a higher radix number system it utilizes

less number of gates and hence saves on time

and reduces circuit complexity. The stages

involved in addition of two numbers in QSD

are: Stage1: Generation of intermediate carry

and sum: When two digits are added in QSD

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 117

number system, the resulting sum ranges

between -6 to +6. Numbers with magnitude

higher than 3 are represented by multiple

digits with least significant digit representing

sum and the next digit corresponds to carry.

Also, every number in QSD can have multiple

representations [14, 15]. The representation is

chosen such that the magnitude of sum digit is

2 or less than 2 and the magnitude of carry

digit is 1 or less than 1, the reason for which is

explained in the next stage. Stage2: The

intermediate sum and carry have a limit fixed

on their magnitude because this allows carry

free addition in the second step. The result can

be obtained directly by adding the sum digit

with the carry of the lower significant digit

[14, 15].

PROPOSED DESIGN

A. 4x4 Multiplier

Block diagram of a 4x4 multiplier is shown in

Fig. 3. In this multiplier, four 2x2 multipliers

are arranged systematically. Each multiplier

accepts four input bits; two bits from

multiplicand and other two bits from

multiplier. Addition of partial products is done

using two four bit Quaternary adders, a two-bit

adder and a half adder. The final result is

obtained by concatenating the least significant

two bits of the first multiplier, four sum bits of

the second four-bit Quaternary adder and the

sum bits of two-bit adder.

Table I shows all intermediate and final results

involved in the multiplication process of two

binary numbers, A = (1111)2 and B = (1001)2.

The data flow in the proposed 4x4 multiplier is

given below: 1) A[1:0] and B[1:0], A[3:2] and

B[1:0], A[1:0] and B[3:2], and A[3:2] and

B[3:2] are multiplied by 2x2 Vedic

multipliers, giving output D0[3:0], D1[3:0],

D2[3:0] and D3[3:0] respectively.

2) D1 [3:0] and D2[3:0] are added by the

proposed 4 bit QSD adder, giving D4[3:0] and

a carry out as the outputs. 3) D4[3:0] and

{D3[1:0], D0[3:2]} are added by the second 4

bit QSD adder, giving D5[3:0] and a carry out

as the outputs. 4) The half adder is used to add

the carry outs of the QSD adders. The output

obtained is fed to the 2 Bit Adder along with

D3[3:2]. 5) The result, C, in binary is obtained

by concatenation of output of 2 Bit Adder,

D5[3:0] and D0[1:0]. The proposed design can

be extended to multiply both negative and

positive integers by an addition of a sign bit in

both inputs. An XOR logic can then be used to

compute the sign bit of the final output. The

multiplication of the magnitudes will proceed

simultaneously in a similar manner to the

example described above.

B. 32x32 multiplier

The 4x4 multiplier design can be scaled to

multiply larger numbers as shown in Fig. 4,

where the design is scaled up for a 32 bit

multiplier.

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 118

C. Proposed adder design based on QSD

 In this paper, a novel idea of an adder, based

on QSD (Quaternary Signed Digit) is

proposed. The algorithm for the proposed

adder uses a hybrid of quaternary and binary

number systems. The outputs from smaller

multipliers are obtained as binary strings.

Inside the addition module, this string is

broken into quaternary digits of two bits each.

Addition using QSD allows us to reduce the

carry propagation delay by making use of

carry free arithmetic i.e. the carry doesn’t
ripple past the subsequent quaternary digit.

Especially for higher bit input strings this

method is extremely efficient. The difficulty in

application of quaternary addition outside

MVL (Multi Voltage logic) is that the least

significant 2 bits of the binary representation

of the quaternary digits can’t be directly

concatenated to form an output binary string

for every case as depicted in Table II. Each

string would have to be read individually and a

conversion module that converts quaternary to

binary would have to be employed. To

overcome this limitation, the concept of an

adjusting bit has been introduced.

The Intermediate sum lies in the range [0, 6],

as the operands are unsigned numbers. From

[16], for quaternary addition to be carry free

beyond the first stage, the intermediate sum

can’t be greater than 2. To ensure this

stipulation holds true, the (1)4 representation

of 3 needs to be chosen while adding.

However, this represents a blocking case when

converting the final output string back into

binary as it prohibits us from simply

concatenating the lower two bits of quaternary

output strings to get the binary equivalent. For

addition of unsigned numbers, if the (03)4

representation would have been used, direct

concatenation of results could have been

possible. But, then that wouldn’t have always

been carry free after the initial stage. Thus, the

concept of an adjusting bit has been devised to

solve the dilemma of which representation of 3

to use, such that both carry free addition and

concatenation of output string bits to get the

final output can be realized in the same design.

The solution to the problem described above,

is that the (03)4 representation of 3 is required

to be taken instead of the (1)4 representation

in some cases. But, determining when such a

change is required before proceeding with the

addition will increase the delay of the design

and be counter-productive. Thus, the (1)4

representation of 3 is always selected in stage

1, to satisfy necessary conditions for carry free

arithmetic. While necessary adjustments are

made in stage 2 if (03)4 representation was to

be taken, the need for such an adjustment is

determined via an adjusting bit.

Where Sn-2 is true if n-2th intermediate sum

digit is 3. This formula can cover the problem

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 119

of n consecutive 3’s in a similar manner. The

adjusting bit can be predicted based on the

initial inputs to the adders itself. It can be

computed in parallel with Stage 1. Thus, effect

on delay of the adder is minimal. The above

example is revaluated with the modified

formula: Input A= (X3X2X1)4 =

(A8A7A6A5A4A3A2A1A0)2 = (030)4 Input

B = (Y3Y2Y1)4 =

(B8B7B6B5B4B3B2B1B0)2 = (003)4

Adjusting Bit for addition of Xn and Yn is Sn-

1.(Sn-2+). As can be seen from the flow of

data shown in Table V. The modified formula

gives the correct binary output after

concatenation. The proposed adder works in

two stages, as shown in Fig. 5. 1) In the first

stage, as in Fig. 5(a), every individual digit at

the same position in the quaternary

representation of two n-bit numbers A and B is

added using a 2 Bit Adder to generate a sum.

This sum lies in the range [0, 6]. From the sum

obtained from the adder, the intermediate sum

and intermediate carry for the next stage are

calculated in parallel using 2x1 multiplexers.

The logic for the selection of the

representation of sum and carry has been

explained in [16]. The adjusting bit is also

computed in parallel with the addition process.

The input to the adjusting bit calculation block

for every quaternary digit addition are the

previous two quaternary digits of A and B

signified by [n-2: n-5]. 2) Second stage has

two modules as shown in Fig. 5(b). One is a

one-bit module that performs the computation

(A+BC). In this case A would be LSB of

intermediate sum, B would be carry from the

previous quaternary digit addition and C

would be the adjusting bit. The other module

will be a half adder which will add the carry

from the (A+B-C) module and the bit to the

left of the least significant bit of the

intermediate sum. As for the final

concatenation, the sign bit would not be used

owing to the adjustments proposed in the

design. Thus, its final value is not computed.

6. SIMULATION RESULTS

Proposed results

6.1.Design summary

Time summary

6.2. Power summary

Extension Results

Figure 6.3. Simulation outcome.

Figure 6.3 shows the simulation results of

proposed DST-R4BM. Here, width is the input

pin, which is used to change the size of DST-

R4BM. So, variable width concept is justified.

Further, X and Y are the input data ports and P

is the output port.

Figure.6 4. Design summary.

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 120

Figure 6.4 shows the design (area) summary of

proposed method. Here, the proposed method

utilizes the low area in terms of slice LUTs

i.e., 1729 out of available 17600.

Figure 6.5. Time summary

Figure 6.5 shows the time summary of

proposed method. Here, the proposed method

consumed total 6.410ns of time delay, where

2.362ns of delay is logical and 4.048ns of

delay is route.

Figure 6.7. Power summary.

Figure 6. 7 shows the power consumption

report of propsoed DST-R4BM. Here, the

DST-R4BM consumed power as 0.165 watts.

7. CONCLUSION

It can be concluded that the design when

scaled to higher bits only shows a marginal

rise in delay due to its core strengths. Firstly,

the parallelism involved in its partial product

generation. Secondly, reduction of carry

propagation delay in the novel adder it

incorporates. Due to the use of QSD, the

design is able to incorporate carry free

arithmetic while eliminating radix conversion

module speed overhead by integrating concept

of adjusting bit logic in its architecture. The

proposed design showed an increase in

implementation area over some designs due to

increased parallelism even in finer nuances of

the architecture. The proposed design is

targeted towards digital systems requiring high

throughput and low latency at the cost of area

overhead. For example, in a DSP system,

operations such as Fast Fourier Transform,

Convolution, Filtering and Discrete Wavelet

transform etc. Multipliers play a key role in

determining the speed of the system. Similarly,

this architecture would be a good candidate to

be implemented as a large part of systems like

DCT, Central Processing Unit (CPU), MAC

(Multiply and Accumulate) Unit, Image

Processors where high-speed multiplications

are critical to the performance of the system. It

can also be observed that despite the objective

of decreasing the delay, the proposed design

performs better than most designs compared in

terms of power for lower input bit sizes [16

and 32 bit]. Although it consumes more power

than other designs higher input bit sizes [64

and 128 bit], it is justifiable when factored in

with advantages gained in speed for higher

input bits.

FUTURE SCOPE

we will extend an optimization for

binary radix-32 (modified) Booth recoded

multipliers to reduce the maximum height of

the partial product columns to [n/4] for n = N-

bit unsigned operands. This is in contrast to

the conventional maximum height of [(n +

1)/4]. Therefore, a reduction of one unit in the

maximum height is achieved. This reduction

may add flexibility during the design of the

pipelined multiplier to meet the design goals, it

may allow further optimizations of the partial

product array reduction stage in terms of

area/delay/power and/or may allow additional

addends to be included in the partial product

array without increasing the delay. The

method can be extended to Booth recoded

radix-8 multipliers, signed multipliers,

combined signed/unsigned multipliers, and

other values of n.

REFERENCES

[1] I. Blake, G. Seroussi, andN.P.Smart,

Elliptic Curves in Cryptography,ser. London

Mathematical Society Lecture Note Series..

Cambridge,U.K.: Cambridge Univ. Press,

1999.

[2] N. R. Murthy and M. N. S. Swamy,

“Cryptographic applications of

brahmaqupta-bha skara equation,” IEEE

Trans. Circuits Syst. I, Reg.Papers, vol.

53, no. 7, pp. 1565–1571, 2006.

[3] L. Song and K. K. Parhi, “Low-energy

digit-serial/parallel finite field

multipliers,” J. VLSI Digit. Process., vol.

19, pp. 149–C166, 1998.

[4] P. K. Meher, “On efficient implementation

of accumulation in finite field over

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 121

GF(2m) and its applications,” IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 17, no. 4, pp. 541–550, 2009.

[5] L. Song, K. K. Parhi, I. Kuroda, and

T.Nishitani, “Hardware/software codesign

of finite field datapath for low-energy

Reed-Solomn codecs,”IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 8,

no. 2, pp.160–172, Apr. 2000.

[6] G. Drolet, “A new representation of

elements of finite fields GF(2m) yielding

small complexity arithmetic circuits,”

IEEE Trans. Comput.,vol. 47, no. 9, pp.

938–946, 1998.

[7] C.-Y. Lee, J.-S. Horng, I.-C. Jou, and E.-H.

Lu, “Low-complexity bit-parallel systolic

montgomery multipliers for special

classes of GF(2m),” IEEE Trans.

Comput., vol. 54, no. 9, pp. 1061–1070,

Sep. 2005.

[8] P. K. Meher, “Systolic and super-systolic

multipliers for finite field GF(2m) based

on irreducible trinomials,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 55, no.

4, pp. 1031–1040, May 2008.

[9] J. Xie, J. He, and P. K. Meher, “Low

latency systolic montgomery multiplier

for finite field GF(2m) based on

pentanomials,” IEEE Trans.Very Large

Scale Integr. (VLSI) Syst., vol. 21, no. 2,

pp. 385–389, Feb.2013.

[10] H.Wu, M. A. Hasan, I. F. Blake, and S.

Gao, “Finite field multiplier using

redundant representation,” IEEE Trans.

Comput., vol. 51, no. 11, pp. 1306–1316,

Nov. 2002.

[11] A. H. Namin, H. Wu, and M. Ahmadi,

“Comb architectures for finite field

multiplication in ,” IEEE Trans.

Comput., vol. 56, no. 7, pp. 909–916, Jul.

2007.

[12] A. H. Namin, H. Wu, and M. Ahmadi, “A

new finite field multiplier using redundat

representation,” IEEE Trans. Comput.,

vol. 57, no. 5, pp. 716–720, May 2008.

[13] A. H. Namin, H.Wu, and M. Ahmadi, “A

high-speed word level finite field

multiplier in using redundant

representation,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 17, no. 10,

pp. 1546–1550,Oct. 2009.

Journal of Engineering Sciences Vol 13 Issue 12,2022

ISSN:0377-9254 www.jespublication.com Page 122

