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ABSTRACT 
The multiplier design which is initially 

developed for area optimizations is an array 

multiplier in which the main disadvantage is the 

worst-case delay. To overcome this 

disadvantage, many methodologies came into 

existence in which Vedic methodology has 

acquired prominence because of fast 

computations. It has been found that Vedic 

multiplier adopting Urdhva Tiryagbhyam is one 

of the most effective multipliers with minimum 

delay for multiplication of all types of numbers, 

either large or small. Though the speed of this 

multiplier is high, area occupancy is more. Thus, 

Binary to Excess-one Converter (BEC) 

technique is employed in this multiplier to 

reduce area. To further improve the 

performance, a 16 × 16 Vedic multiplier 

employing BEC adders and modified logic gates 

is developed. 

The design doesn’t require a radix 

conversion module as the sum is directly 

generated in binary using the novel concept of an 

adjusting bit. The proposed multiplier design is 

compared with a Vedic multiplier based on multi 

voltage or multi value logic [MVL], Vedic 

Multiplier that incorporates a QSD adder with a 

conversion module for quaternary to binary 

conversion, Vedic multiplier that uses Carry 

Select Adder and a commonly used fast 

multiplication mechanism such as Booth 

multiplier. All these designs have been 

developed using Verilog HDL and synthesized 

by Synopsys Design Compiler. 

1. INTRODUCTION 
 BINARY multipliers are a widely used 

building block element in the design of 

microprocessors and embedded systems, and 

therefore, they are an important target for 

implementation optimization. Current 

implementations of binary multiplication follow 

the steps of :  

1) recoding of the multiplier in digits in a certain 

number system;  

2) digit multiplication of each digit by the 

multiplicand, resulting in a certain number of 

partial products; 

 3) reduction of the partial product array to two 

operands using multioperand addition techniques; 

4) carry-propagate addition of the two operands 

to obtain the final result. The recoding type is a 

key issue, since it determines the number of 

partial products.  

 The usual recoding process recodes a 

binary operand into a signed-digit operand with 

digits in a minimally redundant digit set. 

Specifically, for radix-r (r = 2m), the binary 

operand is composed of non-redundant radix-r 

digits (by just making groups of m bits), and 

these are recoded from the set {0, 1,...,r − 1} to 
the set {−r/2,..., −1, 0, 1, . . ., r/2} to reduce the 

complexity of digit multiplications. For n-bit 

operands, a total of n/m partial products are 

generated for two’s complement representation, 

and (n + 1)/m for unsigned representation. Radix-

4 modified Booth is a widely used recoding 

method, that recodes a binary operand into radix-

4 signed digits in the set {−2, −1, 0, 1, 2}. This is 
a popular recoding since the digit multiplication 

step to generate the partial products only requires 

simple shifts and complementation.  

 The resulting number of partial products 

is about n/2. Higher radix signed recoding is less 

popular because the generation of the partial 

products requires odd multiples of the 

multiplicand which can not be achieved by means 

of simple shifts, but require carry-propagate 

additions. For instance, for radix-4signed digit 

recoding [9] the digit set is {−8, −7,..., 0,..., 7, 8}, 
so that some odd multiples of the multiplicand 

have to be generated. Specifically, it is required 

to generate ×3, ×5, and ×7 multiples (×6 is 

obtained by simple shift of ×3). The generation of 

each of these odd multiplies requires a two term 

addition or subtraction, yielding a total of three 

carry-propagate additions.  
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2. LITERATURE SURVEY: 
 However, the advantage of the high radix 

is that the number of partial products is further 

reduced. For instance, for radix-4and n-bit 

operands, about n/4 partial products are 

generated. Although less popular than radix-4, 

there exist industrial instances of radix-8. and 

radix-4multiplier in microprocessors 

implementations. The choice of these radices is 

related to area/delay/power optimization of 

pipelined multipliers (or fused multiplier adder as 

in the case of a Intel Itanium microprocessor), for 

balancing delay between stages and/or reduce the 

number of pipelining flip-flops.  

 A further consideration is that carry-

propagate adders are today highly energy-delay 

optimized, while partial product reductions trees 

suffer the increasingly serious problems related 

to a complex wiring and glitching due to 

unbalanced signal paths. It is recognized in the 

literature that a radix-8 recoding leads to lower 

power multipliers compared to radix-4 recoding 

at the cost of higher latency (as a combinational 

block, without considering pipelining). 

Moreover, although the radix-4multiplier requires 

the generation of more odd multiples and has a 

more complex wiring for the generation of partial 

products, a recent microprocessor design  

considered it to be the best choice for low power 

(under the specific constraints for this 

microprocessor).  

 In some optimizations for radix-4 two’s 

complement multipliers were introduced. 

Although for n-bit operands, a total of n/2 partial 

products are generated, the resulting maximum 

height of the partial product array is n/2 + 1 

elements to be added (in just one of the columns). 

This extra height by a single-bit row is due to the 

+1 introduced in the bit array to make the two’s 

complement of the most significant partial 

product (when the recoded most significant digit 

of the multiplier is negative). The maximum 

column height may determine the delay and 

complexity of the reduction tree, authors showed 

that this extra column of one bit could be 

assimilated (with just a simplified three bit 

addition) with the most significant part of the first 

partial product without increasing the critical path 

of the recoding and partial product generation 

stage. The result is that the partial product array 

has a maximum height of n/2. This reduction of 

one bit in the maximum height might be of 

interest for high-performance short-bit width 

two’s complement multipliers (small n) with tight 

cycle time constraints, that are very common in 

SIMD digital signal processing applications. 

Moreover, if n is a power of two, the 

optimization allows to use only 4-2 carry-save 

adders for the reduction tree, potentially leading 

to regular layouts. These kind of optimizations 

can become particularly important as they may 

add flexibility to the “optimal” design of the 

pipelined multiplier.  

 Optimal pipelining in fact, is a key issue 

in current and future multiplier (or multiplier-

add) units: 1) the latency of the pipelined unit is 

very important, even for throughput oriented 

applications, as it impacts the energy 

consumption of the whole core; and 2) the 

placement of the pipelining flip-flops should at 

the same time minimize total power, due to the 

number of flip-flops required and the unbalanced 

signal propagation paths. The methods proposed 

in were mostly focused on two’s complement 

radix-4 Booth multipliers, thus leaving open the 

research and extension to higher radices and 

unsigned multiplications (for unsigned integer 

arithmetic or mantissa times mantissa in a 

floating-point unit). For a radix higher than 4, it 

is necessary to generate the odd multiples 

(usually with adders), resulting in the reduction 

of the time slacks necessary to “hide” the 

simplified three bit assimilation. Unsigned 

multiplication may produce a positive carry out 

during recoding (this depends of the value of n 

and the radix used for recoding), leading to one 

additional row, increasing the maximum height 

of the partial product array by one row, not just in 

one but in several columns. For all these reasons, 

we need to extend the techniques presented. 

The challenge of the verifying a large design is 

growing exponentially. There is a need to define 

new methods that makes functional verification 

easy. Several strategies in the recent years have 

been proposed to achieve good functional 

verification with less effort. Recent advancement 

towards this goal is methodologies. The 

methodology defines a skeleton over which one 

can add flesh and skin to their requirements to 

achieve functional verification.  

Complex multiplication is of immense 

importance in Digital Signal Processing (DSP) 

and Image Processing (IP). To implement the 

hardware module of Discrete Fourier 

Transformation (DFT), Discrete Cosine 

Transformation (DCT), Discrete Sine 

Transformation (DST) and modem broadband 

communications; large numbers of complex 

multipliers are required. Complex number 

multiplication is performed using four real 
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number multiplications and two additions/ 

subtractions. In real number processing, carry 

needs to be propagated from the least significant 

bit (LSB) to the most significant bit (MSB) when 

binary partial products are added [1]. Therefore, 

the addition and subtraction after binary 

multiplications limit the overall speed. Many 

alternative method had so far been proposed for 

complex number multiplication [2-7] like 

algebraic transformation based 

implementation[2], bit-serial multiplication 

using offset binary and distributed arithmetic [3], 

the CORDIC (coordinate rotation digital 

computer) algorithm [4], the quadratic residue 

number system (QRNS) [5], and recently, the 

redundant complex number system (RCNS). 

Blahut et. al [2] proposed a technique for 

complex number multiplication, where the 

algebraic transformation was used. This 

algebraic transformation saves one real 

multiplication, at the expense of three additions 

as compared to the direct method 

implementation. A left to right array [7] for the 

fast multiplication has been reported in 2005, 

and the method is not further extended for 

complex multiplication. But, all the above 

techniques require either large overhead for 

pre/postprocessing or long latency. Further many 

design issues like as speed, accuracy, design 

overhead, power consumption etc., should not be 

addressed for fast multiplication [8]. In 

algorithmic and structural levels, a lot of 

multiplication techniques had been developed to 

enhance the efficiency of the multiplier; which 

encounters the reduction of the partial products 

and/or the methods for their partial products 

addition, but the principle behind multiplication 

was same in all cases. Vedic Mathematics is the 

ancient system of Indian mathematics which has 

a unique technique of calculations based on 16 

Sutras (Formulae). "Urdhva-tiryakbyham" is a 

Sanskrit word means vertically and crosswise 

formula is used for smaller number 

multiplication. "Nikhilam Navatascaramam 

Dasatah" also a Sanskrit term indicating "all 

from 9 and last from 10", formula is used for 

large number multiplication and subtraction. All 

these formulas are adopted from ancient Indian 

Vedic Mathematics. In this work we formulate 

this mathematics for designing the complex 

multiplier architecture in transistor level with 

two clear goals in mind such as: i) Simplicity 

and modularity multiplications for VLSI 

implementations and ii) The elimination of carry 

propagation for rapid additions and subtractions. 

Mehta et al. [9] have been proposed a multiplier 

design using "Urdhva-tiryakbyham" sutras, 

which was adopted from the Vedas. The 

formulation using this sutra is similar to the 

modem array multiplication, which also 

indicating the carry propagation issues. A 

multiplier design using "Nikhilam 

Navatascaramam Dasatah" sutras has been 

reported by Tiwari et. al [10] in 2009, but he has 

not implemented the hardware module for 

multiplication.  

 

Multiplier implementation in the gate level 

(FPGA) using Vedic Mathematics has already 

been reported but to the best of our knowledge 

till date there is no report on transistor level 

(ASIC) implementation of such complex 

multiplier. By employing the Vedic 

mathematics, an N bit complex number 

multiplication was transformed into four 

multiplications for real and imaginary terms of 

the final product. "Nikhilam. Navatascaramam 

Dasatah" sutra is used for the multiplication 

purpose, with less number of partial products 

generation, in comparison with array based 

multiplication. When compared with existing 

methods such as the direct method or the 

strength reduction technique, our approach 

resulted not only in simplified arithmetic 

operations, but also in a regular arraylike 

structure. The multiplier is fully parameterized, 

so any configuration of input and output word-

lengths could be elaborated. Transistor level 

implementation for perfonnance parameters such 

as propagation delay, dynamic leakage power 

and dynamic switching power consumption 

calculation of the proposed method was 

calculated by spice spectre using 90 nm standard 

CMOS technology and compared with the other 

design like distributed arithmetic[3], parallel 

adder based implementation [1] and algebraic 

transfonnation[2] based implementation. The 

calculated results revealed (16,16)x(16,16) 

complex multiplier have propagation delay only 

4 ns with 6.5 mW dynamic switching power. 

In this paper we report on a novel high speed 

complex multiplier design using ancient Indian 

Vedic mathematics.  

3. VEDIC MULTIPLICATION 

ALGORITHMS 
Vedic mathematics is part of four Vedas 

(books of wisdom). It is part of Sthapatya- 

Veda (book on civil engineering and 

architecture), which is an upa-veda 

(supplement) of Atharva Veda. It covers 
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explanation of several modern mathematical 

terms including arithmetic, geometry (plane, 

co-ordinate), trigonometry, quadratic 

equations, factorization and even calculus. His 

Holiness Jagadguru Shankaracharya Bharati 

Krishna Teerthaji Maharaja (1884-1960) 

comprised all this work together and gave its 

mathematical explanation while discussing it 

for various applications. Swahiji constructed 

16 sutras (formulae) and 16 Upa sutras (sub 

formulae) after extensive research in Atharva 

Veda. Obviously these formulae are not to be 

found in present text of Atharva Veda because 

these formulae were constructed by Swamiji 

himself. Vedic mathematics is not only a 

mathematical wonder but also it is logical. 

That‟s why VM has such a degree of 
eminence which cannot be disapproved. Due 

these phenomenal characteristic, VM has 

already crossed the boundaries of India and 

has become a leading topic of research abroad. 

VM deals with several basic as well as 

complex mathematical operations. Especially, 

methods of basic arithmetic are extremely 

simple and powerful.  

The word „Vedic‟ is derived from the word 

„veda‟ which means the store-house of all 

knowledge. Vedic mathematics is mainly 

based on 16 Sutras (or aphorisms) dealing with 

various branches of mathematics like 

arithmetic, algebra, geometry etc. These Sutras 

along with their brief meanings are enlisted 

below alphabetically.  

1) (Anurupye) Shunyamanyat – If one is in 

ratio, the other is zero.  

2) Chalana-Kalanabyham – Differences and 

Similarities.  

3) Ekadhikina Purvena – By one more than the 

previous One.  

4) Ekanyunena Purvena – By one less than the 

previous one.  

5) Gunakasamuchyah – The factors of the sum 

is equal to the sum of the factors.  

6) Gunitasamuchyah – The product of the sum 

is equal to the sum of the product.  

7) Nikhilam Navatashcaramam Dashatah – All 

from 9 and last from 10.  

 8) Paraavartya Yojayet – Transpose and 

adjust.  

9) Puranapuranabyham – By the completion or 

noncompletion.  

10) Sankalana- vyavakalanabhyam – By 

addition and by subtraction.  

11) Shesanyankena Charamena – The 

remainders by the last digit.  

12) Shunyam Saamyasamuccaye – When the 

sum is the same that sum is zero.  

13) Sopaantyadvayamantyam – The ultimate 

and twice the penultimate.  

14) Urdhva-tiryakbhyam – Vertically and 

crosswise.  

15) Vyashtisamanstih – Part and Whole.  

16) Yaavadunam – Whatever the extent of its 

deficiency.  

 These methods and ideas can be directly 

applied to trigonometry, plain and spherical 

geometry, conics, calculus (both differential 

and integral), and applied mathematics of 

various kinds. As mentioned earlier, all these 

Sutras were reconstructed from ancient Vedic 

texts early in the last century. Many Sub-sutras 

were also discovered at the same time, which 

are not discussed here.  

The beauty of Vedic mathematics lies in the 

fact that it reduces the otherwise cumbersome-

looking calculations in conventional 

mathematics to a very simple one. This is so 

because the Vedic formulae are claimed to be 

based on the natural principles on which the 

human mind works. This is a very interesting 

field and presents some effective algorithms 

which can be applied to various branches of 

engineering such as computing and digital 

signal processing.  

The multiplier architecture can be generally 

classified into three categories. First is the 

serial multiplier which emphasizes on 

hardware and minimum amount of chip area. 

Second is parallel multiplier (array and tree) 

which carries out high speed mathematical 

operations. But the drawback is the relatively 

larger chip area consumption. Third is serial- 

parallel multiplier which serves as a good 

trade-off between the times consuming serial 

multiplier and the area consuming parallel 

multipliers.  

ALGORITHMS OF VEDIC 

MATHEMATICS:-  

VEDIC MULTIPLICATION  
The proposed Vedic multiplier is based on the 

Vedic multiplication formulae (Sutras). These 

Sutras have been traditionally used for the 

multiplication of two numbers in the decimal 

number system. In this work, we apply the 

same ideas to the binary number system to 

make the proposed algorithm compatible with 

the digital hardware. Vedic multiplication 

based on some algorithms, some are discussed 

below:  
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Urdhva Tiryakbhyam sutra  
The multiplier is based on an algorithm 

Urdhva Tiryakbhyam (Vertical & Crosswise) 

of ancient Indian Vedic Mathematics. Urdhva 

Tiryakbhyam Sutra is a general multiplication 

formula applicable to all cases of 

multiplication. It literally means “Vertically 

and crosswise”. It is based on a novel concept 

through which the generation of all partial 

products can be done with the concurrent 

addition of these partial products. The 

parallelism in generation of partial products 

and their summation is obtained using 

Urdhava Triyakbhyam explained in fig 2.1. 

The algorithm can be generalized for n x n bit 

number. Since the partial products and their 

sums are calculated in parallel, the multiplier 

is independent of the clock frequency of the 

processor. Thus the multiplier will require the 

same amount of time to calculate the product 

and hence is independent of the clock 

frequency. The net advantage is that it reduces 

the need of microprocessors to operate at 

increasingly high clock frequencies. While a 

higher clock frequency generally results in 

increased processing power, its disadvantage is 

that it also increases power dissipation which 

results in higher device operating 

temperatures. By adopting the Vedic 

multiplier, microprocessors designers can 

easily circumvent these problems to avoid 

catastrophic device failures. The processing 

power of multiplier can easily be increased by 

increasing the input and output data bus widths 

since it has a quite a regular structure. Due to 

its regular structure, it can be easily layout in a 

silicon chip. The Multiplier has the advantage 

that as the number of bits increases, gate delay 

and area increases very slowly as compared to 

other multipliers. Therefore it is time, space 

and power efficient. It is demonstrated that this 

architecture is quite efficient in terms of 

silicon area/speed.  

1) Multiplication of two decimal numbers- 

325*738  
To illustrate this multiplication scheme, let us 

consider the multiplication of two decimal 

numbers (325 * 738). Line diagram for the 

multiplication is shown in Fig.2.2. The digits 

on the both sides of the line are multiplied and 

added with the carry from the previous step. 

This generates one of the bits of the result and 

a carry. This carry is added in the next step 

and hence the process goes on. If more than 

one line are there in one step, all the results are 

added to the previous carry. In each step, least 

significant bit acts as the result bit and all 

other bits act as carry for the next step. 

Initially the carry is taken to be zero. To make 

the methodology more clear, an alternate 

illustration is given with the help of line 

diagrams in figure 2.2 where the dots represent 

bit „0‟ or „1‟.  

 
Figure.1: Multiplication of two decimal 

numbers by Urdhva Tiryakbhyam. 

4. PROPOSED METHOD 

Any proposed system must be efficient in 

terms of power, speed and size as per growing 

technology. In early days Vedic mathematics 

is based on 16 vedic sutras.By using Vedic 

methods the mathematical operations are fast 

and the processing speed to perform the 

operations can be improved. There has been 

many existing binary multipliers which are 

efficient. 

MULTIPLIER  

A binary multiplier [3] can be used in digital 

electronics as a electronic circuit,such as in 

computers to find the product of two binary 

numbers.Carbon-copy of normal 

multiplication technique is used by binary 

multiplier,the multiplicand is multiplied with 

each bit of the multiplier beginning from the 

least significant bit.Two half adder(HA) 

modules can be used in order to implement a 

2-bit binary multiplier.A no of computer 

arithmetic calculations can be used to 

appliance digital multiplier.Among these 

techniques many imply computing a set of 

partial products, and then summing the 

generated partial products together.Fig. 1, 

shows 2x2 binary multiplier. 
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Fig. 2. 2x2 Binary Multiplier 

 

A. Ripple Carry Adder(RCA)  
In a multiplier number of Full adders are 

arranged in a manner to give the results of an 

addition operation of n-bit binary 

sequence.The input to next Full adder stage is 

obtained from the previous carry output of 

adder,it repeats until it reaches to the ending 

stage.Fig. 2 shows Four bit(RCA) Ripple 

Carry Adder [4]. 

VEDIC MULTIPLIER  

The mode used by Vedic multiplier [6] is 

Vedic mathematics.By using this technique it 

will increase,and consumes fewer hardware 

elements.The sutra [6] used by Vedic 

multiplier is Urdhva Tiryakbhyam[3] which 

means Vertically as well as Crosswise. The 

Fig. 3 shows block diagram of 32 bit vedic 

multiplier circuit. The2 input bits are separated 

into 2 similar parts the vertical and cross 

product calculations can be done as shown in 

Fig. 3, with inputs A[31:0] and B[31:0].As 

shown in the Fig. 3, the 2 adders are used in 

the design of intermediate stages of the 

addition.The output carry Cout from these two 

adders is given as input to another RCA.If bits 

are not of equal sizes concatenate them.For 32-

bit Modified Vedic multiplier the outputs of 

parallel adder is given to OR gate and of the 

size of last RCA is reduced to half. Fig. 3, 

shows 32-bit Vedic multiplier. 

 

 
 

Fig. 3. 4-Bit Ripple Carry Adder 

 
Fig. 4. 4-Bit Vedic Multiplier 

MODIFIED VEDIC MULTIPLIER  

In the proposed paper, the two parallel adders 

are replaced by CSA [4] for the better 

execution of the multiplier architecture. The 

recommended modified Vedic multiplication 

methodology is done in the following for 4 bit 

inputs, A(A3 -A0) and B(B3 -B0) and 8 bit 

output S (S7 -S0). 

 
A multiplier of 2 bit is used to calculate 

intermediate stage results, and the output is 4 

bits. (A3A2)(B3B2) using 2 bit multiplier 

generates result: S33S32S31S30 

(A3A2)(B1B0) using 2 bit multiplier generates 

result: S23S22S21S20 (A1A0)(B3B2) using 2 

bit multiplier generates result: S13S12S11S10 

(A1A0)(B1B0) using 2 bit multiplier generates 

result: S03S02S01S00 

 
Fig. 5. Modified 4 Bit Vedic Multiplier 

The 4 bit CSA Carry Save Adder [4] is used to 

add three 4 bit data inputs: S23S22S21S20, 

S13S12S11S10 and S31S30 S03 S02. The 

proposed 4 bit modified Vedic multiplier [7] is 

designed and the Fig. 4 shows it. The last two 

MSBs of CSA outputs are given as inputs to 

OR gate. In addition, the last stage 4 bit RCA 

is replaced by 2 bit adder circuit through 

which the output value of OR gate can be 

controlled. One of the input to last stage 2-bit 

adder[6] is obtaining from the output of or 

gate. Similarly, a 4 bit RCA block is a must 

needed for 8 bit vedic multiplication design. 

Fig. 5, shows 32 bit modified Vedic multiplier. 
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Fig. 6. Modified 32 Bit Vedic Multiplier 

5. EXTENSION 

One of the primary features that help us 

determine the computational power of a 

processor is the speed of its arithmetic unit. An 

important function of an arithmetic block is 

multiplication because, in most mathematical 

computations, it forms the bulk of the 

execution time. Thus, the development of a 

fast multiplier has been a key research area for 

a long time. Some of the important algorithms 

proposed for fast multiplication in literature 

are Array, Booth and Wallace multipliers [1]-

[5]. Vedic Mathematics [6, 7] is a 

methodology of arithmetic rules that allows for 

more efficient implementations regarding 

speed. Multiplication in this methodology 

consists of three steps: generation of partial 

products, reduction of partial products, and 

finally carrypropagate addition. Multiplier 

design based on Vedic mathematics has many 

advantages as the partial products and sums 

are generated in one step, which reduces the 

carry propagation from LSB to MSB. This 

feature helps in scaling the design for larger 

inputs without proportionally increasing the 

propagation delay as all smaller blocks of the 

design work concurrently. References [8], [9] 

and [11] compared Vedic Multiplier with other 

multiplier architectures namely Booth, Array 

and Wallace on the basis of delay and power 

consumption. Vedic multiplier showed 

improvements in both the parameters over 

other architectures. Thus, many 

implementations of multiplication algorithms 

based on Vedic sutras have been reported in 

literature [10]-[12]. Vedic multiplier schemes 

proposed in literature are based on Urdhva 

Tiryagbhyam and Nikhilam sutras of Vedic 

Mathematics. As Nikhilam sutra is only 

efficient for inputs that are close to the power 

of 10, in this paper a design to perform high-

speed multiplication based on the Urdhva 

Tiryagbhyam sutra of Vedic Mathematics 

which is generalized method for all numbers, 

has been presented. The final step, carry-

propagate addition, requires a fast adder 

scheme because it forms a part of the critical 

path. A variety of adder schemes have been 

proposed in literature to optimize the 

performance of Vedic multiplier [13]. Adder 

based on QSD shows an improvement in speed 

over other state of the art adders [14, 15]. 

Earlier implementations of QSD adder were 

based on Multi Voltage or Multi Value Logic 

(MVL) [16]. The difficulty in application of 

quaternary addition outside MVL (Multi 

Voltage logic) is that, the adder is only a small 

unit of the design whose outputs will needed to 

be converted back to binary for further 

processing. However, use of a conversion 

module undermines the advantages gained in 

speed by using QSD. In this paper, a novel 

implementation of an adder based on QSD is 

proposed, which reduces the carry propagation 

delay in the design by making use of carry free 

arithmetic. The proposed adder design works 

on a hybrid of binary and quaternary number 

systems wherein the sum is directly generated 

in binary using the concept of an adjusting bit, 

eliminating the conversion module. The design 

can be scaled to larger bit implementations 

such as 32, 64, 128 or more with minimal 

increase in propagation delay owing to the 

parallelism prevalent in the design. We have 

compared our design with a Vedic multiplier 

based on MVL logic that uses a ripple carry 

adder [16], Vedic Multiplier that incorporates 

a QSD adder and a conversion module for 

quaternary to binary conversion, Vedic 

multiplier that uses state of the art fast adder 

scheme such as Carry select adder [17] and a 

commonly used fast multiplication mechanism 

such as Booth multiplier [18], to prove the 

feasibility of our design across important 

comparison points. 

Quaternary Signed Digit (QSD number 

system)  

The QSD is a radix-4 number system that 

provides the benefit of faster arithmetic 

calculations over binary computation, as it 

eliminates rippling of carry during addition. 

Every number in QSD can be represented 

using digits from the set {-3,-2,-1, 0, 1, 2, 3}. 

Being a higher radix number system it utilizes 

less number of gates and hence saves on time 

and reduces circuit complexity. The stages 

involved in addition of two numbers in QSD 

are: Stage1: Generation of intermediate carry 

and sum: When two digits are added in QSD 
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number system, the resulting sum ranges 

between -6 to +6. Numbers with magnitude 

higher than 3 are represented by multiple 

digits with least significant digit representing 

sum and the next digit corresponds to carry. 

Also, every number in QSD can have multiple 

representations [14, 15]. The representation is 

chosen such that the magnitude of sum digit is 

2 or less than 2 and the magnitude of carry 

digit is 1 or less than 1, the reason for which is 

explained in the next stage. Stage2: The 

intermediate sum and carry have a limit fixed 

on their magnitude because this allows carry 

free addition in the second step. The result can 

be obtained directly by adding the sum digit 

with the carry of the lower significant digit 

[14, 15]. 

PROPOSED DESIGN  

A. 4x4 Multiplier  

Block diagram of a 4x4 multiplier is shown in 

Fig. 3. In this multiplier, four 2x2 multipliers 

are arranged systematically. Each multiplier 

accepts four input bits; two bits from 

multiplicand and other two bits from 

multiplier. Addition of partial products is done 

using two four bit Quaternary adders, a two-bit 

adder and a half adder. The final result is 

obtained by concatenating the least significant 

two bits of the first multiplier, four sum bits of 

the second four-bit Quaternary adder and the 

sum bits of two-bit adder. 

 

Table I shows all intermediate and final results 

involved in the multiplication process of two 

binary numbers, A = (1111)2 and B = (1001)2. 

The data flow in the proposed 4x4 multiplier is 

given below: 1) A[1:0] and B[1:0], A[3:2] and 

B[1:0], A[1:0] and B[3:2], and A[3:2] and 

B[3:2] are multiplied by 2x2 Vedic 

multipliers, giving output D0[3:0], D1[3:0], 

D2[3:0] and D3[3:0] respectively. 

2) D1 [3:0] and D2[3:0] are added by the 

proposed 4 bit QSD adder, giving D4[3:0] and 

a carry out as the outputs. 3) D4[3:0] and 

{D3[1:0], D0[3:2]} are added by the second 4 

bit QSD adder, giving D5[3:0] and a carry out 

as the outputs. 4) The half adder is used to add 

the carry outs of the QSD adders. The output 

obtained is fed to the 2 Bit Adder along with 

D3[3:2]. 5) The result, C, in binary is obtained 

by concatenation of output of 2 Bit Adder, 

D5[3:0] and D0[1:0]. The proposed design can 

be extended to multiply both negative and 

positive integers by an addition of a sign bit in 

both inputs. An XOR logic can then be used to 

compute the sign bit of the final output. The 

multiplication of the magnitudes will proceed 

simultaneously in a similar manner to the 

example described above. 

 

B. 32x32 multiplier  

The 4x4 multiplier design can be scaled to 

multiply larger numbers as shown in Fig. 4, 

where the design is scaled up for a 32 bit 

multiplier. 
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C. Proposed adder design based on QSD 

 In this paper, a novel idea of an adder, based 

on QSD (Quaternary Signed Digit) is 

proposed. The algorithm for the proposed 

adder uses a hybrid of quaternary and binary 

number systems. The outputs from smaller 

multipliers are obtained as binary strings. 

Inside the addition module, this string is 

broken into quaternary digits of two bits each. 

Addition using QSD allows us to reduce the 

carry propagation delay by making use of 

carry free arithmetic i.e. the carry doesn’t 
ripple past the subsequent quaternary digit. 

Especially for higher bit input strings this 

method is extremely efficient. The difficulty in 

application of quaternary addition outside 

MVL (Multi Voltage logic) is that the least 

significant 2 bits of the binary representation 

of the quaternary digits can’t be directly 

concatenated to form an output binary string 

for every case as depicted in Table II. Each 

string would have to be read individually and a 

conversion module that converts quaternary to 

binary would have to be employed. To 

overcome this limitation, the concept of an 

adjusting bit has been introduced. 

 

The Intermediate sum lies in the range [0, 6], 

as the operands are unsigned numbers. From 

[16], for quaternary addition to be carry free 

beyond the first stage, the intermediate sum 

can’t be greater than 2. To ensure this 

stipulation holds true, the (1 )4 representation 

of 3 needs to be chosen while adding. 

However, this represents a blocking case when 

converting the final output string back into 

binary as it prohibits us from simply 

concatenating the lower two bits of quaternary 

output strings to get the binary equivalent. For 

addition of unsigned numbers, if the (03)4 

representation would have been used, direct 

concatenation of results could have been 

possible. But, then that wouldn’t have always 

been carry free after the initial stage. Thus, the 

concept of an adjusting bit has been devised to 

solve the dilemma of which representation of 3 

to use, such that both carry free addition and 

concatenation of output string bits to get the 

final output can be realized in the same design. 

The solution to the problem described above, 

is that the (03)4 representation of 3 is required 

to be taken instead of the (1 )4 representation 

in some cases. But, determining when such a 

change is required before proceeding with the 

addition will increase the delay of the design 

and be counter-productive. Thus, the (1 )4 

representation of 3 is always selected in stage 

1, to satisfy necessary conditions for carry free 

arithmetic. While necessary adjustments are 

made in stage 2 if (03)4 representation was to 

be taken, the need for such an adjustment is 

determined via an adjusting bit.  

 

 

Where Sn-2 is true if n-2th intermediate sum 

digit is 3. This formula can cover the problem 
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of n consecutive 3’s in a similar manner. The 

adjusting bit can be predicted based on the 

initial inputs to the adders itself. It can be 

computed in parallel with Stage 1. Thus, effect 

on delay of the adder is minimal. The above 

example is revaluated with the modified 

formula: Input A= (X3X2X1)4 = 

(A8A7A6A5A4A3A2A1A0)2 = (030)4 Input 

B = (Y3Y2Y1)4 = 

(B8B7B6B5B4B3B2B1B0)2 = (003)4 

Adjusting Bit for addition of Xn and Yn is Sn-

1.(Sn-2+ ). As can be seen from the flow of 

data shown in Table V. The modified formula 

gives the correct binary output after 

concatenation. The proposed adder works in 

two stages, as shown in Fig. 5. 1) In the first 

stage, as in Fig. 5(a), every individual digit at 

the same position in the quaternary 

representation of two n-bit numbers A and B is 

added using a 2 Bit Adder to generate a sum. 

This sum lies in the range [0, 6]. From the sum 

obtained from the adder, the intermediate sum 

and intermediate carry for the next stage are 

calculated in parallel using 2x1 multiplexers. 

The logic for the selection of the 

representation of sum and carry has been 

explained in [16]. The adjusting bit is also 

computed in parallel with the addition process. 

The input to the adjusting bit calculation block 

for every quaternary digit addition are the 

previous two quaternary digits of A and B 

signified by [n-2: n-5]. 2) Second stage has 

two modules as shown in Fig. 5(b). One is a 

one-bit module that performs the computation 

(A+BC). In this case A would be LSB of 

intermediate sum, B would be carry from the 

previous quaternary digit addition and C 

would be the adjusting bit. The other module 

will be a half adder which will add the carry 

from the (A+B-C) module and the bit to the 

left of the least significant bit of the 

intermediate sum. As for the final 

concatenation, the sign bit would not be used 

owing to the adjustments proposed in the 

design. Thus, its final value is not computed. 

6. SIMULATION RESULTS 

Proposed results 

 
6.1.Design summary 

 

 
Time summary 

 
6.2. Power summary 

Extension Results 

 

 

Figure 6.3. Simulation outcome. 

Figure 6.3 shows the simulation results of 

proposed DST-R4BM. Here, width is the input 

pin, which is used to change the size of DST-

R4BM. So, variable width concept is justified. 

Further, X and Y are the input data ports and P 

is the output port. 

 
 

Figure.6 4. Design summary. 
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Figure 6.4 shows the design (area) summary of 

proposed method. Here, the proposed method 

utilizes the low area in terms of slice LUTs 

i.e., 1729 out of available 17600.  

 
Figure 6.5. Time summary 

Figure 6.5 shows the time summary of 

proposed method. Here, the proposed method 

consumed total 6.410ns of time delay, where 

2.362ns of delay is logical and 4.048ns of 

delay is route. 

 
Figure 6.7. Power summary. 

Figure 6. 7 shows the power consumption 

report of propsoed DST-R4BM. Here, the 

DST-R4BM consumed power as 0.165 watts. 

 

7.  CONCLUSION 
 

It can be concluded that the design when 

scaled to higher bits only shows a marginal 

rise in delay due to its core strengths. Firstly, 

the parallelism involved in its partial product 

generation. Secondly, reduction of carry 

propagation delay in the novel adder it 

incorporates. Due to the use of QSD, the 

design is able to incorporate carry free 

arithmetic while eliminating radix conversion 

module speed overhead by integrating concept 

of adjusting bit logic in its architecture. The 

proposed design showed an increase in 

implementation area over some designs due to 

increased parallelism even in finer nuances of 

the architecture. The proposed design is 

targeted towards digital systems requiring high 

throughput and low latency at the cost of area 

overhead. For example, in a DSP system, 

operations such as Fast Fourier Transform, 

Convolution, Filtering and Discrete Wavelet 

transform etc. Multipliers play a key role in 

determining the speed of the system. Similarly, 

this architecture would be a good candidate to 

be implemented as a large part of systems like 

DCT, Central Processing Unit (CPU), MAC 

(Multiply and Accumulate) Unit, Image 

Processors where high-speed multiplications 

are critical to the performance of the system. It 

can also be observed that despite the objective 

of decreasing the delay, the proposed design 

performs better than most designs compared in 

terms of power for lower input bit sizes [16 

and 32 bit]. Although it consumes more power 

than other designs higher input bit sizes [64 

and 128 bit], it is justifiable when factored in 

with advantages gained in speed for higher 

input bits.  

FUTURE SCOPE 

we will extend an optimization for 

binary radix-32 (modified) Booth recoded 

multipliers to reduce the maximum height of 

the partial product columns to [n/4] for n = N-

bit unsigned operands. This is in contrast to 

the conventional maximum height of [(n + 

1)/4]. Therefore, a reduction of one unit in the 

maximum height is achieved. This reduction 

may add flexibility during the design of the 

pipelined multiplier to meet the design goals, it 

may allow further optimizations of the partial 

product array reduction stage in terms of 

area/delay/power and/or may allow additional 

addends to be included in the partial product 

array without increasing the delay. The 

method can be extended to Booth recoded 

radix-8 multipliers, signed multipliers, 

combined signed/unsigned multipliers, and 

other values of n.  
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