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ABSTRACT 

There has been a significant increase in the adoption of technology in cricket recently. This trend has 

created the problem of duplicate work being done in similar computer vision-based research works. 

Our research tries to solve one of these problems by segmenting ball deliveries in a cricket broadcast 

using deep learning models, MobileNet and YOLO, thus enabling researchers to use our work as a 

dataset for their research. The output from our research can be used by cricket coaches and players to 

analyze ball deliveries which are played during the match. This paper presents an approach to 

segment and extract video shots in which only the ball is being delivered. The video shots are a series 

of continuous frames that make up the whole scene of the video. Object detection models are applied 

to reach a high level of accuracy in terms of correctly extracting video shots. The proof of concept 

for building large datasets of video shots for ball deliveries is proposed which paves the way for 

further processing on those shots for the extraction of semantics. Ball tracking in these video shots is 

also done using a separate RetinaNet model as a sample of the usefulness of the proposed dataset. The 

position on the cricket pitch where the ball lands is also extracted by tracking the ball along the y-

axis. The video shot is then classified as a full-pitched, good-length or short-pitched delivery. 
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1. INTRODUCTION 

Cricket is arguably one of the most popular sports in the world. It is particularly popular in South-

Asian countries, where it is the most played sport. Unlike football, hockey, basketball and other 

sports where the game is played continuously, progress in a cricket match is made on a ball-by-ball 

basis. The key moment in cricket is when the bowler delivers a ball and the batsman plays the shot. 

A total of six deliveries are bowled in an over. 

Technology has already been adopted in cricket at the international level and to some extent at the 

domestic level. Most of this technology is based on computer vision techniques. To broadcast a 
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cricket match, different types of cameras are used which are assembled on the cricket ground in 

different positions. These include static cameras as well as moving cameras such as spider cams. In 

our work, we propose a model using deep learning models to extract video shots from the fixed 

camera containing the video shot of the delivery of the ball from behind the bowler hereafter referred 

to as the front camera. There are numerous hurdles in extracting this video shot from the broadcast 

video, which include changes in brightness, movement of the cameras, occlusion, replays, 

advertisements, etc. In addition to the inherent challenges, there are also other problems associated 

with broadcast videos such as the difficulty in distinguishing the pitch and the ground, especially 

when more than one pitch is visible from the front camera. A lot of research has been conducted to 

overcome these problems using special cameras with markers and fixed positioning. The main 

problem with the existing work is that special cameras must be fitted in particular positions which 

makes this research difficult to implement. 

 

1.1 Segmentation of Ball Deliveries 

The most readily available footage of international and domestic matches have at least one camera set 

up in front of the batsman which is used to view the bowler running to deliver the ball. This makes 

our work applicable to large datasets, hence opening the window to commercialization in our 

research at a later stage. There are a very small number of commercial products available where 

players can set up the whole pitch with lots of different cameras, sensors, and even carpeted pitch so 

that they can analyze themselves but these require a lot of capital and have constraints including a 

large setup and immobility. Our research also rectifies this by only relying on the video footage and 

eliminating any need for sensors and extra setup. The advancements in deep learning have enabled us 

to perform this task simply by processing videos already available. 

The task of extracting the front run-up of the bowler and the delivery of the ball using computer vision 

techniques require many small problems to be solved first, including analyzing the brightness and 

contrast of different videos, eliminating visual noise, frame alignment based on different broadcast 

videos which sometimes requires markers to be placed on the pitch in particular positions, etc., thus 

inducing special requirements for video processing. 

All of the aforementioned problems require a large amount of work to be conducted by applying 

different computer vision techniques. When applying a deep learning-based approach, these 

problems are solved automatically due to the way the deep learning-based models are built. Object 

detection in deep learning is not affected by mild changes to the contrast and brightness of videos 

and the built-in visual noise. The frame alignment and angles are also countered by training frames 
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rigorously at different angles. Hence, the advancements in deep learning models enable us to achieve 

high performance and accuracy. 

Another problem that is encountered in extracting videos from the broadcast video is the extraction of 

video shots from the primary video source. This problem is less likely to be solved using the built-in 

deep learning nature and requires core computer vision-based methods as well. The video frames of a 

video are continuous and are temporally semantic. Exploiting this feature of video frames, there are 

plenty of methods available which we implemented including analyzing the absolute difference in the 

color component of the continuous frames and applying object detection using deep learning-based 

models but the most reliable method comes out to be background subtractor which gives you 

background mask of the image. 

The extracted video shots also need to be categorized as either a live delivery or a replay of one of the 

previous deliveries. In broadcast videos, the same ball can be replayed several times to viewers so 

our model must differentiate between a live delivery and a replay of the delivery. To address this 

problem, we analyzed the speed of the movement of objects in frames using the macroblock motion 

and bitrate information that is readily accessible from the MPEG video with very minimal decoding 

(Kobla et al., 1999). We also detected the scorecard at the bottom of the broadcast video using 

different computer vision techniques. Scorecard detection has been shown to be the most reliable 

method to identify replays in broadcast videos. 

We develop a generic model which takes broadcast videos as the input and outputs small clips of 

video shots in which the bowler delivers the ball and the batsman plays the shot. This is illustrated in  

Figure 1. Flow of segmentation of video shots containing ball deliveries from a larger video 
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1.2 Challenges 

There are several challenges in segmenting Front Pitch View (FPV) video shot from the broadcast 

videos. The primary challenge is to differentiate the video segments of the bowler run up with the 

video segments when the broadcast is done from the zoomed out front camera which shows the 

whole pitch along with the players. These video segments are displayed mostly immediately after the 

shot is played by the batter. The examples of these are shown in Figure 2. 

 

Figure 2. Scenes similar to Front Pitch View (FPV) 

 

Another major challenge is to detect the boundary of the video segment after the batter has played 

the shot when the ball is followed on by the same camera. This occurs mostly when the ball goes 

behind the batter. There is no CUT or FADE and the ball is directly followed even after the ball 

touches the bat. As the ball is continuously focused and followed, the background subtractor also 

does not work well in this case. 

As far as ball tracking is concerned, the frames sequence in broadcast video represents a 2D image. 

This does not contain the depth to determine how far the ball has traveled towards the batter. We 

solved this problem by mapping pitch scale on actual pitch and then determining the zoom factor 

using object detection on the batter which will be discussed later. 

 

1.3 Ball Tracking and Classification 

After extracting the video shots of the ball delivery, the ball is tracked from the moment it is released 

from the bowler's hands until it pitches on the ground to classify the video shot as a full-pitched, 

good-length, or short-pitched delivery. Deep learning methods are the most reliable solution for this 

task but they also have several limitations, especially when detecting small objects such as a cricket 
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ball. There are many other challenges which will be discussed later. 

After extracting the bounce point on the 2-dimensional image of the pitch, the actual position of the 

ball needs to be calculated in a 3-dimensional frame. To solve this problem, we used object detection 

along with approximations and the standards that are followed in different broadcast videos. The 

pitch of the ball is then classified as a full-pitched delivery, a good-length delivery, or a short-pitched 

delivery. We propose a model which uses video shots from our work on shot segmentation to directly 

classify a given delivery into one of these three categories. This currently occurs in international 

cricket where multiple cameras are mounted at different angles on the boundary. However, we only 

used the front pitch view from the segmented ball delivery dataset as input and detected the pitch 

position of the ball without the need for any additional equipment. 

 

1.4 Contribution 

The number of video datasets available online are comparatively less than the image datasets 

available online. The most popular video dataset available is YouTube-8M Segments published by 

Google containing 237,000 human verified labeled videos (Google, 2019). Although there are plenty 

of cricket videos available online, there is not even a single dataset publicly available containing the 

video segments from the sports of cricket. 

Using our approach, we have compiled Cricket Video Dataset (CricViDS) containing unlabeled 

video segments from the broadcast videos available on YouTube. The dataset contains 3000 

unlabeled video clips containing the ball delivery and the stroke play. These videos are from all the 

formats of the game including Twenty20 matches, one day internationals and test matche. This will 

enable researchers to extract semantics directly from the video clips instead of processing whole 

broadcast footage. In future, we are looking to label this dataset with the type of shot played by the 

batter. Furthermore, the methodology followed in our research can be applied to other sports as well 

for activity recognition and to compile different sports video datasets. 

 

2. RELATED WORK 

The extraction of semantics from broadcast videos in sports is a very popular area of interest. Most 

cricket-based video analysis occurs in the subcontinent due to the popularity of this sport in the 

region. Several of these studies relate to the generation of highlights using the whole video of a 

cricket match whereas others are based on annotating cricket videos by deriving semantics from 
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them. 

 

2.1 Extraction of Video Shots for Front Pitch View 

(Sharma et al., 2015) present an approach to annotate cricket videos with semantic descriptions on a 

fine-grain spatio- temporal scale. They follow a two-stage approach. In the first stage, they segmented 

the video into different scenes using the information available in text commentaries and in the second 

stage, they classified video shots and different phrases in text commentary into different categories. 

 

Another similar study conducted by (Abburu, 2010) presents a tool for the annotation of cricket 

videos using text extraction from images and voice in videos. The author proposed a DLER tool to 

extract the semantics from cricket videos. This tool is a robust approach for text detection, 

localization, extraction, and reorganization in video frames. 

(Kumar et al., 2014) determined the direction of the stroke played by the batsman. They first extracted 

the video frame of the stroke play by segmenting the videos using CUT and FADE techniques, then 

they applied multiple techniques to identify the direction of the stroke play (Jiang et al., 1998), 

(Lefèvre et al., 2003). First, they applied a tree-structure approach for batsman pose estimation which 

didn’t work well, so they followed an optical flow analysis approach proposed by (Horn & Schunck, 

1981) which achieved an accuracy of 80%. 

 

Another study by (Pramod Sankar et al., 2006) focuses on the temporal segmentation of videos using 

a multi-modal approach. They used readily available commentary text of the cricket match to 

segment the videos into meaningful scenes using the scene level description provided by the 

commentary. They also presented techniques for the generation of highlights automatically. 

 

2.2 Ball Tracking and Classification 

A large body of research has been conducted on ball tracking, particularly in cricket for umpiring 

assistance, training of players, and performing different in-game analyses. In one such works, (Arora 

et al., 2017) developed umpiring assistance and a ball tracking system using a smartphone camera 

but this work is conducted in a special scenario with the bowler delivering the ball in the nets to the 

batsman and the smartphone camera fixed at a particular known point. They used the sliding window 

approach to increase the accuracy of ball tracking. 
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Computer vision has also been applied in tennis on several occasions. (Yan et al., 2014) conducted 

research to track a tennis ball without any intervention. They applied different techniques for object 

tracking in computer vision. They computed the trajectory of the tennis ball using candidate level, 

tracklet level and path level approaches. 

Another similar object tracking technique was proposed by (Liu & Carr, 2014) to detect and track the 

motion of players in sports. They applied random forests on low-level, mid-level and high-level 

tracklets. The three-level approach is similar to the one proposed by (Yan et al., 2014). 

In another study, ball tracking in cricket is undertaken using pure computer vision methods with 

seeded growing region algorithm and ball candidate generation (Velammal & Kumar, 2010). 

 

Another patented work involving ball tracking using at least four cameras in a spaced-apart 

relationship was conducted by (Sherry & Hawkins, 2000). This patent was registered for general use 

in sports but in the case of cricket, they suggested using at least six highly elevated cameras 

positioned along the ground boundaries to track the ball so that it is less likely to be obscured by the 

fielders on the ground. This patented work is currently being used as technology termed Hawk-Eye in 

international cricket to detect ball trajectories to assist umpires make decisions regarding LBWs. 

 

3. METHODOLOGY 

3.1 Data Collection & Pre-Preprocessing 

The motivation for our work is to provide researchers with a model to build a large-scale open dataset 

where semantically annotated labeled datasets are available in sports, including cricket. The dataset 

should have reliable accuracy if it is to be adopted by researchers worldwide. To achieve this 

objective, our proposed model should have real-time performance so that it can be applied to a broad 

dataset. The dataset in our case comprises live broadcast videos which are also easily accessible. As 

our work deals with cricket as a test case, we require a large dataset of broadcast videos. 

Unfortunately, not many broadcast videos are freely available online. We acquired the broadcast 

videos of different cricket matches including one-day international matches as well as test matches 

from YouTube. The videos were from different broadcasters and had different parameters. Their 

attributes were also of various types including encoding, resolution, frames per second and format of 

the video. The videos contain both live broadcasted videos as well as videos from the highlights of 

different cricket matches. The reason for selecting videos in different formats is to ensure the 

reliability of the model in all circumstances. Furthermore, we also extracted full match videos of the 
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Twenty20 (T20) matches from the Australian T20 league, named the Big Bash League and the 

Pakistani T20 league named the Pakistan Super League. The videos are readily available on 

YouTube. These videos also contain general television commercials which increase the diversity of 

our input dataset. We used free tools available on the Internet to download the videos. The main 

difference between the shorter formats of the game and the test matches is the color of the players’ 

kits and the color of the ball. The shorter formats of the game include T20 matches and one-day 

international matches which look similar in the videos apart from a slight change in the playing rules. 

 

3.2 Detection of the Front View of the Pitch or Bowler Run-up 

A large body of research has been conducted on extracting semantics from broadcast videos to gain 

useful information in real time. Numerous hurdles had to be overcome to achieve this task, including 

continuous motion, changes in illumination, partial occlusion, etc. The main problem is that the 

broadcast videos we deal with involve moving cameras which further increases the complexity of the 

problem. 

 

To extract the video shots which contain ball deliveries, we first detected the video shot in which the 

bowler is running to deliver the ball. This video shot is always from the front camera where the 

camera is facing the batsman directly in the center with the umpire in the same line. The bowler is 

usually running towards the pitch with the ball in hand and his back towards the camera. The runner 

stands on the other side of the umpire from which the bowler is delivering the ball. The keeper usually 

stands behind the batsman and is not always visible from the front view. Some of the camera angles 

that are used in a broadcast footage are shown in Figure 3. 

 

Figure 3. Different types of views in a cricket broadcast 

 

3.2.1 Image Classification using MobileNet 
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We used image classification using MobileNet to classify different frames from the video. In an 

image classification problem, a model is trained using a training dataset and is tested using a separate 

test dataset to analyze the efficiency of the model. This is a very common approach used in deep 

learning where the image must be classified into one of the specified types. 

We used ML.net (Microsoft, 2018a) which is an open-source and cross-platform machine learning 

framework for different machine learning tasks, which includes sentiment analysis, product 

recommendation, price prediction, customer segmentation, object detection, fraud detection, image 

classification, etc. Instead of manually identifying hundreds of front pitch view images and negative 

images, we adopted a transfer learning approach. Transfer learning is a technique used in machine 

learning to speed up learning using existing knowledge from previously trained models. 

To apply transfer learning, we chose the most robust existing model which achieves great accuracy in 

classifying a variety of images, hence it aligns with our aim to achieve real-time performance. In a 

study by (Bianco et al., 2018), they presented an in-depth analysis of a majority of DNN models 

which were currently being used. They analyzed a list of deep learning models for recognition 

accuracy, model complexity, computational time, memory usage and inference time. These analyses 

were performed on NVIDIA Titan Xp GPU with Pascal architecture. 

We used MobileNet-v2 (Howard et al., 2017) as the best model for our scenario keeping in view its 

high performance which is shown in terms of FPS. MobileNet-v2 has a total of 53 layers which is 

significantly fewer compared to the other available models. The pre-trained MobileNet-v2 model 

was then used along with our dataset to train our model. The interesting thing about this approach is 

that we were able to train our model in only 40 seconds using a total of 385 images as shown in 

Table 1. 

Table 1. Details for the model trained using transfer learning 

 

Model Details 

Pre-trained Model MobileNet-v2 

Epoch 50 

Batch Size 10 

Learning Rate 0.01 

Total Images 385 

Training Dataset 80% 

Test Dataset 20% 
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Training Time 40 seconds 

 

 

The architecture of our transfer learning approach is shown in Figure 4. 

 

Figure 4. Architecture used to build the model using transfer learning 

Our model achieves considerable success which enables our approach to be used in other sports as 

well. We used a very small dataset of only 385 images to leverage the full potential of transfer 

learning. The small dataset ensures ease of training and the ability to use the model in other 

applications in cricket and other sports. Our model was able to achieve 100% accuracy when using a 

small dataset from a single game which is similar to most of the related works. 

 

3.2.2 Umpire and Pitch Annotation Approach Using YOLO 

 

With the advancements in deep learning, it is being applied in a variety of domains including cricket. 

This includes regression, image classification, and object detection. To classify the front pitch view 

and other images, we followed a simple object detection approach to annotate the pitches and the 

back view of the umpire. We trained the annotated dataset using the available object detection 

models. 

 

We compared different available frameworks for their mean average precision (mAP) and speed 

(FPS) and chose the YOLO (You Only Look Once) framework as the one best suited to our scenario. 

The difference in the frameworks was compared on the PASCAL VOC 2007 dataset by (Redmon & 

Farhadi, 2017). 
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YOLO is an algorithm that can be implemented using different neural network frameworks, such as 

PyTorch, Keras or Darknet. Keeping in view one of our primary performance goals, we selected the 

Darknet implementation of YOLO as it is written in C language and CUDA (NVIDIA, 2007). CUDA 

is a computing platform developed by NVIDIA for parallel programming over GPU. It allows a 

substantial increase in computing performance by harnessing the power of the graphics processing 

unit (GPU). 

 

We used the Alturos.Yolo library for our work which is an open-source darknet wrapper of YOLO 

on GitHub (AlturosDestinations, 2018). It supports both CPU and GPU to facilitate our aim of 

developing a flexible model for mass adoption. To annotate the images, we used another open-source 

software Alturos.ImageAnnotation by the same author to annotate our dataset (AlturosDestinations, 

2019). With the aim of ensuring the high reliability of our model, we annotated pitches as well as 

umpires in the front view of the bowler run-up. The umpire is always standing with his back in front 

of the bowler run-up scene. We identified the front view of the pitch by detecting these objects in an 

image to classify it as either the front view of the pitch or other, as shown in Figure 5. 

 

Figure 5. Pitch is annotated with a green rectangle and the umpire is annotated with a red rectangle 

The weights were first initialized to be as the default YOLO weights that are available on their 

website and were then trained on a local machine as the computational requirements were not huge 

due to limited number of training classes. We used NVIDIA GeForce GTX 1050 GPU (4GB) to train 

our weights for two hours up to a maximum number of iterations until the weights saturate and the 
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average loss reached minimum and stabilized. 

 

3.2.3 Dual-Stage Approach to Increase Precision 

 

Both our image classification and object detection approaches were able to achieve a high recall value 

but there was room for improvement in terms of precision. To rectify the low value of precision, we 

converted our model into a dual-stage model where image classification and object detection is 

undertaken simultaneously. Our core aim is to increase the precision value which occurs at the cost of 

a reasonable recall value. 

 

Figure 6. Dual-stage flow for front pitch view detection and shot extraction 

We achieved high precision after applying the dual-stage for object detection at the cost of a little 

processing time incurred by the double processing. The parallel processing of the classifier and 

object detector is done to keep the performance high by utilizing the parallel processing ability of the 

GPU. The architecture of the dual-stage pitch view detection and shot extraction is shown in Figure 

6. 

 

3.3 Replay Identification 

After the front pitch view was successfully identified, we categorized the video shots as either 
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replays or live ball deliveries. In cricket, the scorecard at the bottom is only shown when the footage 

being displayed is live. This scorecard disappears when the replay of the delivery is being shown. The 

presence of a scorecard is detected when there is a static frame at the bottom using the absolute 

difference between the first and the last frame of the video shot. The scorecard is usually stationary 

and doesn’t move with the bowler run-up. We applied our method to approximately 1446 video shots 

for ball deliveries from different formats of the game and it was able to detect replays from all of 

them. The main aim of scorecard detection is to remove duplicates and include only relevant video 

shots in the final output. 

 

3.4 Video Shot Boundary Detection 

The video shot is the sequence of continuous frames until the scene changes. After the front pitch 

view was detected, the subsequent frames belonging to the same video shot until the end boundary of 

the video shot were detected. We applied the BackgroundSubtractor class of the OpenCV library to 

calculate the foreground mask of the frame. After initializing the subtraction model for the first few 

frames, we calculated the total foreground percentage of the frame. If the foreground percentage of 

the frame is greater than the threshold, the video shot change is detected. This approach worked very 

reliably and detected the shot change successfully in 1446 video shots that we used from all formats 

of the game including videos for the highlights. The foreground mask difference between the 

consecutive frames at the shot boundary is shown in Figure 7. 

 

Figure 7. Foreground mask for consecutive frames at the boundary of the video 

shot 

 

3.5 Ball Tracking and Ball Bounce Position Detection 

After proposing a model to generate a large reliable dataset of video shots of ball deliveries in cricket, 
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we used our results from the previous section as the input to track the ball using object detection and 

to also detect the position on the pitch where the ball bounces to classify the delivery as a full-pitched 

delivery, a good-length delivery or a short-pitched delivery. As evaluated by (Nguyen et al., 2020), 

the mAP of YOLO for small object detection is quite low. (Lin et al., 2017) proposed an object 

detector called RetinaNet. RetinaNet is a one-stage object detector similar to YOLO which works very 

well with small objects. Being a one-stage object detector, the inference speed of RetinaNet is very 

high but it also surpasses most of the two-stage detectors in terms of accuracy. 

 

The main problem with ball tracking is that a cricket ball moves very fast when it is thrown by the 

bowler towards the batsman. The ball usually moves as fast as 90 miles per hour. If the shutter speed 

of the camera or frames per second is not very high, the ball appears as a blurry object, so these 

images are unreliable for training. To rectify this problem, we extracted images from videos with 50 

frames per second. As a test case, we only extracted frames from videos of test cricket because the 

color of the balls for test cricket is red and for other formats of the game, the color of the ball is white. 

We extracted 9,232 frames from different videos and annotated 2,255 images containing balls and 

used the rest of the 6,977 images as the negative images containing no balls. We used VoTT, an 

open-source annotation tool from Microsoft to annotate the images (Microsoft, 2018b). The complete 

details of our dataset are shown in Table 2. 

Table 2. Dataset details for ball tagging 

 

Dataset Details 

Format of the game Test Cricket 

Color of the ball Red 

Images Extracted 9,232 

Images annotated with cricket ball 2,255 

Images taken with no ball present 6,977 

Cropped percentage 

(top, bottom, left, right) 

(20%,25%,30%,30%) 

 

As the images were extracted from 50 FPS videos, the balls were very clear in the images. Using our 

in-game knowledge, we cropped the extracted images to filter out additional parts of the image as the 

cricket balls always remain in the focus and are mostly at the center of the screen and can be 

annotated easily. 
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We used Python for the Keras implementation of the RetinaNet algorithm to train our images on 

Google Colab as locally available GPU, NVIDIA GeForce GTX 1050 (4 GB) was not enough to fit 

our dataset. Google Colab is a product developed by Google that provides the use of free GPU for 

machine learning and data analysis for research purposes. 

 

We achieved more than 90% accuracy in detecting the ball. The false positives in the continuous 

frames were eliminated using the shortest-distance approach. The object that is least distant from the 

position of the ball in the previous frame is more entitled to be classified as a ball. We successfully 

tracked the ball path in a 2-dimensional image as shown in Figure 8. 

 

Figure 8. The circles show the 2-dimensional trajectory of the ball on the frame where the ball 

bounces off the pitch. The red circles show the ball travelling downward whereas the blue 

circles show the ball travelling going upwards. 

 

The ball is released by the bowler from over his head and is thrown towards the batsman and after 

bouncing off the pitch, the ball rises upwards towards the batsman. By tracking the 2-dimensional 

trajectory of the ball on a 2-dimensional image, the position where the ball bounces off the pitch can 

be easily identified by grabbing the lowest position of the ball on the 2-dimensional image. The 2-

dimensional position needs to be converted into a 3-dimensional position to obtain the distance of the 

ball from the batsman’s stumps. This distance classifies the ball into full-pitched, good-length, or 

short-pitched delivery. 
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To extract the distance of the ball from the camera or the stumps, the depth of the ball needs to be 

determined which is usually either done using special depth cameras or fixed cameras from the side 

of the pitch at the boundary. We applied object detection to determine the approximate distance of the 

ball from the pitch using the same broadcast footage. To grab the bounce position of the ball on the 

pitch, the dimensions of the pitch and the camera angle should be known from which the broadcast 

footage was shot. This was done using approximation and standards followed in cricket. 

 

Although there is no fixed value that defines the range of a good length delivery, most cricketers 

agree that the ball pitching somewhere between six to eight meters from the stumps is a good-length 

delivery. This is the length where the batsman is uncertain as to whether to play the ball on the front 

foot or the back foot. Also, a slight deviation at this length is very difficult to play as the batsman has 

to judge lateral movement as well as the bounce of the ball and also has less time to respond to it. We 

used the criteria which is shown in Table 3 to segregate different types of deliveries. 

 

Table 3. Dataset details for categorizing delivery type 

 

Delivery Type Pitching distance from batsman’s stumps 

Full-Pitched Delivery Less than 6 meters 

Good-Length Delivery 6 to 8 meters (Some people consider 6 to 9 

meters 

as good-length) 

Short-Pitched Delivery More than 8 meters 

 

Using the above criteria, we designed the figure of the pitch from the bowler’s crease to the 

batsman’s crease which is scaled according to the dimensions of the pitch excluding the distance 

from stumps to crease as shown in Figure 9. 

 

Figure 9. Distribution of different types of deliveries on a cricket pitch (to-

scale) 
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We used this distribution image and mapped it on the pitch vertically from the batsman’s crease to 

the bowler’s crease. To take into account the angle that the broadcast camera has with the pitch, we 

used the trial and error method. We determined that by rotating the image 20 degrees on the y-axis 

from the front perspective, we were able to match the actual pitch in most cases. The distribution 

image mapped to the actual image is shown in Figure 10. 

 

As the ball travels towards the batsman after being released by the bowler, the front camera continues 

to be zoomed on the batsman to give a clear view of the batsman and the ball. There is no marker on 

the pitch to calculate how much the camera has zoomed into the batsman. We applied ResNet50 

model to calculate this zoom factor. We used the frame when the ball is released from the bowler’s 

hand and the frame when it bounces off the pitch to calculate the zoom factor and the position where 

the ball bounces off the pitch. 

 

Figure 10. Calculation of the bounce position of the ball 

 

 

The following steps are used to calculate the bounce position of the ball: 

Step 1: 

Detect the batsman and the bowler using the ResNet50 model and calculate the height of 

the batsman. Let H1 be the height of the batsman in the first frame where the bowler 

releases the ball. 
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Step 2: 

Calculate the height of the pitch from the bottom of the batsman to the bottom of the bowler in 

the same frame. Let P1 be the height of the pitch in the first frame. 

Step 3: 

Detect the batsman using object detection again in the second frame. 

Let H2 be the height of the batsman in the second frame where the bowler releases the ball. 

Step 4: 

Calculate the zoom factor of the second frame using the following formula: 𝐻2 

 

Step 

5: 

Z = 𝐻1 
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Calculate the height of the full pitch in the second frame using the following formula: 

P2 = 𝑍 ∗ 𝑃1 

Step 6: 

After the height of the pitch in the second frame is known, map the distribution image on the pitch and 

categorize the type of ball by checking the position where the ball bounces off the surface. 

As shown in Figure 10, the type of ball is not discrete but continuous. The ball in Figure 10 pitches 

just above the good- length delivery which is still considered to be a good length by most viewers. 

The details of the dataset we used for classifying our dataset are shown in Table 4. 

Table 4. Dataset details for classification of delivery type 

 

Dataset Details 

Format of the game Test Cricket 

Color of the ball Red 

Deliveries Categorized 214 

Model used for object detection 

(bowler 

and batsman) 

ResNet50 

Model used for ball detection RetinaNet using Keras 

 

 

 

4. Results 

4.1 Detection of the front view of the pitch or bowler run-up 

We discuss the results for the different approaches we used to detect the front view of the pitch or 

the scene where the bowler runs to deliver the ball. 

 

4.1.1 Image Classification using MobileNet 

 

To test the prediction accuracy of the model, we compiled a comprehensive dataset of 497,040 

images containing an equal number of the front pitch view and other images from several different 

videos which include T20 matches, one- day international matches, and test matches (Reference for 
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the dataset?). The confusion matrix for the result is shown in Table 5. 

Table 5. Confusion matrix for the results using transfer learning 

 

 

n=497,04

0 

Predicte

d: 

FRON

T 

Predicte

d: NOT 

FRONT 

 

Actu

al: 

FRO

NT 

TP = 

233,358 

FN = 15,162 248,520 

Actual: 

NOT 

FRONT 

FP = 4,845 TN = 

243,675 

248,520 

 238,203 258,837  

 

The confusion matrix above shows remarkable results considering that a small training dataset of only 

385 images was used. The recall and precision for our model are shown as follows. 

 

Recall = 
𝑇𝑃

 𝑇𝑃+𝐹𝑁 

= 
233,358 

233,358+1

5,162 

= 93.89% 

 

Precision =  
𝑃

 𝑇𝑃+𝐹𝑃 

=

 
233,35

8 

233,358+

4,845 

= 97.96% 
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High values of recall and precision make our model easily adoptable in a large number of scenarios. 

The same approach can be applied to different sports other than cricket. 

Most live sports broadcasts are shot at 30 frames per second. Our model surpassed this by 9 frames 

per second on a low- end GPU which enables our model to be easily adopted in live broadcast 

scenarios. We used EmguCV which is a .NET wrapper for computer vision library OpenCV to grab 

frames from the video and perform different tasks (Emgu Corporation,  2015).  The  

performance  results  for  our  model  are  shown  in  the  Table  6. 

 

Table 6. Performance results using transfer learning 

 

Performance Results 

Images Predicted 497,040 frames from different videos 

Prediction time per frame 25.56 ms 

Prediction Speed (FPS) 39 frames per second 

Overhead for grabbing one frame from 

video 

10.17 ms 

 

 

4.1.2 Umpire and Pitch annotation approach using YOLO 

 

The model that we developed by annotating the pitch was then tested on the same testing dataset 

which was used to test the image classification approach detailed in the previous section. The 

confusion matrix for the detection of the front view using the umpire and pitch is shown separately in 

Tables 7 and 8, respectively. 

Table 7. Confusion matrix for the results using object detection of the umpire’s 

back view 

 

 

n=497,04

0 

Predicte

d: 

FRON

T 

Predicte

d: NOT 

FRONT 

 

Actu
TP = FN = 38,988 248,520 
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al: 

FRO

NT 

209,532 

Actual: 

NOT 

FRONT 

FP = 14,022 TN = 

234,498 

248,520 

 223,554 273,486  

 

The recall and precision for front pitch view detection using object detection of the umpire’s back view 

did not give better results for recall and precision compared to image classification using the transfer 

learning approach shown as follows: 

 

Recall = 
𝑇𝑃

 𝑇𝑃+𝐹𝑁 

= 
209,532 

209,532+3

8,988 

= 84.31% 

 

Precision =  
𝑃

 𝑇𝑃+𝐹𝑃 

= 
209,532 

209,532+1

4,022 

= 93.72% 

 

 

The results using the same approach but for direct pitch detection are given in Table 8. 

Table 8. Confusion matrix for the results using object detection of pitch 

 

 

n=497,04

0 

Predicte

d: 

FRON

T 

Predicte

d: NOT 

FRONT 

 

Actu

al: 

FRO

TP = 

240,084 

FN = 8,436 248,520 
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NT 

Actual: 

NOT 

FRONT 

FP = 12,255 TN = 

236,265 

248,520 

 252,339 244,701  

 

This approach to detect annotated pitches in the images directly to identify the front pitch view gives 

better results for both recall and precision compared to umpire detection and image classification. 

The precision for this approach is comparable to image classification using the transfer learning 

approach. 

 

Recall = 
𝑇𝑃

 𝑇𝑃+𝐹𝑁 

=

 
240,08

4 

240,084+

8,436 

= 96.60% 

 

Precision =  
𝑃

 𝑇𝑃+𝐹𝑃 

= 
240,084 

240,084+1

2,255 

= 95.14%
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We also calculated the results for both of the objects (umpire and pitch) to detect the front pitch view 

so that if either of the objects is detected, we considered it as a front pitch view. The results for the 

approach are shown in the confusion matrix in Table 9. 

Table 9. Confusion matrix for the results using object detection of either umpire 

or pitch 

 

 

n=497,04

0 

Predicte

d: 

FRON

T 

Predicte

d: NOT 

FRONT 

 

Actu

al: 

FRO

NT 

TP = 

241,452 

FN = 7,068 248,520 

Actual: 

NOT 

FRONT 

FP = 17,841 TN = 

230,679 

248,520 

 259,293 237,747  

 

By using this approach, the recall value is increased by a reasonable amount. 

Recall =  
𝑃

 𝑇𝑃+𝐹𝑁 

 

=

 241,45

2 

241,452

+7,068 

= 97.15% 

 

Precision =  
𝑃

 𝑇𝑃+𝐹𝑃 

=

 241,45

2 

241,452+

17,841 

= 93.11% 

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 491



  

Finally, the results for the dual-stage model where image classification and object detection is 

undertaken simultaneously are shown in Table 10. 

Table 10. Confusion matrix for the dual-stage model using image classification as well as 

object detection 

 

 

n=497,04

0 

Predicte

d: 

FRON

T 

Predicte

d: NOT 

FRONT 

 

Actu

al: 

FRO

NT 

TP = 

248,349 

FN = 171 248,520 

Actual: 

NOT 

FRONT 

FP = 45,942 TN = 

202,578 

248,520 

 294,291 202,749  

 

By using this approach, we achieved a high value for recall. The major drawback of this approach 

is the low value of precision, shown as follows: 

Recall =  
𝑃

 𝑇𝑃+𝐹𝑁 

 

=  

248,349 

248,349

+171 

= 99.93% 

 

Precision =  
𝑃

 𝑇𝑃+𝐹𝑃 

=

 248,34

9 

248,349+

45,942 

= 84.38% 

The recall and precision for different methods are shown in Figure 11. 
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Figure 11. Recall and precision for all the methods 

 

Our single-stage object detection models achieved 312 frames per second. This robustness of our 

model enables it to be used in scenarios where very high performance is required. The performance of 

our model is still underrated as the results are not from the top-performing GPUs in the market. The 

performance results for our model are shown in Table 11. 

Table 11. Performance results using object detection 

 

Performance Results 

Images Predicted 497,040 frames from different videos 

Prediction time per frame 3.2 ms 

Prediction Speed (FPS) 312 frames per second 

GPU NVIDIA GeForce GTX 1050 (4GB) 

 

 

4.2 Ball Bounce Detection 

The position of the pitch where the ball bounced is calculated to classify the different delivery types. 

Although all the results looked correct from the viewer’s perspective, there is no concrete yardstick 

to test the results again, as a good- length delivery for one viewer can be a full-pitched delivery for 

Recall and Precision Comparison for all the 

methods 

100% 

95% 

90% 

85% 

80% 

75% 

70% 

65% 

60% 

55% 

50% 

Image Umpire Pitch Any of Umpire  Dual Stage 

Classification Detection 

using Transfer 

Learning 

Detection or Pitch 

Recall Precision 
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another. The results are shown in Table 12. 

 

Table 12. Results for Ball Bounce Detection 

 

Ball Bounce Detection Results 

Format of the game Test Cricket 

Color of the ball Red 

Deliveries Categorized 214 

Full-Pitched Deliveries 80 

Good-Length Deliveries 85 

Short-Pitched Deliveries 49 

 

5. CONCLUSION 

Our work proposes a novel method to solve a largely unaddressed problem in cricket. When video 

shots are concatenated in a single video, our model was able to compress the original broadcast video 

twenty times which can be very helpful for cricket coaches and players. Using the proposed method, 

researchers can easily construct a large dataset of cricket video shots from original cricket 

broadcasts. 

 

The proposed dual-stage model achieved 99.93% precision which makes our research viable for 

commercial use as well. Also, achieving more than 93% for both precision and recall by training only 

385 images in 40 seconds shows the potential of using the transfer learning approach in different 

sports for the extraction of semantics. 

 

We intend to extend our work to further detect the type of shot played by the batsman and then 

propose a model to automatically generate cricket commentary using generative adversarial networks 

(GAN). The aim of using GAN is to propose a model which outperforms humans in terms of 

performance and the quality of cricket commentary. 
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