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Abstract: 
The outbreak of the novel corona virus disease (COVID-19) in December 2019 has led to global crisis around the world. 

The disease was declared pandemic by World Health Organization (WHO) on 11th of March 2020. Currently, the 

outbreak has afected more than 200 countries with more than 37 million confrmed cases and more than 1 million death 

tolls as of 10 October 2020. Reverse-transcription polymerase chain reaction (RT-PCR) is the standard method for 

detection of COVID-19 disease, but it has many challenges such as false positives, low sensitivity, expensive, and 

requires experts to conduct the test. The current work proposes the use of a deep learning approach based on pretrained 

AlexNet model for the classifcation of COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia, and normal 

CXR scans obtained from diferent public databases. The model was trained to perform two-way classifcation (i.e., 

COVID-19 vs. normal, bacterial pneumonia vs. normal, non-COVID-19 viral pneumonia vs. normal, and COVID-19 vs. 

bacterial pneumonia), three-way classifcation (i.e., COVID-19 vs. bacterial pneumonia vs. normal), and four-way 

classifcation (i.e., COVID-19 vs. bacterial pneumonia vs. non-COVID-19 viral pneumonia vs. normal). For non-COVID-

19 viral pneumonia and normal (healthy) CXR images, the proposed model achieved 94.43% accuracy, 98.19% 

sensitivity, and 95.78% specifcity. For bacterial pneumonia and normal CXR images, the model achieved 91.43% 

accuracy, 91.94% sensitivity, and 100% specifcity. For COVID-19 pneumonia and normal CXR images, the model 

achieved 99.16% accuracy, 97.44% sensitivity, and 100% specifcity. For classifcation CXR images of COVID-19 

pneumonia and non-COVID-19 viral pneumonia, the model achieved 99.62% accuracy, 90.63% sensitivity, and 99.89% 

specifcity. For the three-way classifcation, the model achieved 94.00% accuracy, 91.30% sensitivity, and 84.78%. 

Finally, for the four-way classifcation, the model achieved an accuracy of 93.42%, sensitivity of 89.18%, and specifcity 

of 98.92%.  
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1. Introduction 

Since the first case of novel coronavirus COVID-19 in December in China, it has infected 230 countries and led to 

640,273,401 new cases and 6,615,322 deaths worldwide [1]. It also affected the world economy, overall healthcare, and the lives of 

every individual. Due to its highly contagious nature, the overall control of the virus outbreak has been challenging and there have 

been rapid infections in public. The main symptoms of COVID-19 are sore throat, cough, fever, pain in the chest area, and 

shortness of breath. Sometimes it can also lead to several severe complications such as induced pneumonia and acute 

respiratory distress syndrome (ARDS) [2].  With the help of mass vaccinations being used around the world, the prevention 

of COVID-19 has improved to a certain degree. The Reverse Transcription Polymerase Chain Reaction (RT-PCR) test, 

commonly known as a PCR test, has become a common practice to diagnose the COVID-19 virus.  Initially, individuals had 

to go to hospitals or specialized local laboratories to get PCR tests. Nowadays, it has become one of the gold-standard methods 

and with the help of PCR special kits, individuals can get tested quickly and easily at home anytime, especially when suspicious 

symptoms arise. However, such PCR tests alone are insufficient in diagnosing the virus due to high false negatives when get 

tested at home. Additionally, the test shows positive or negative results and cannot classify the complications of the virus 

such as pneumonia or ARDS. 

  Differentiating COVID-19-infected pneumonia and other viral or bacterial pneumonia types is important to effectively fight against 

the disease and/or implement preventive measures in healthcare. Latency in the treatment can lead to death or different 

complications such as reduced lung functions and the development of chronic non-communicable respiratory diseases including 

chronic obstructive pulmonary disease or asthma [3–5]. Early diagnosis and treatment of pneumonia in children are especially 

important since it is the major cause of childhood mortality [6]. In practice, chest imaging modalities are used to diagnose and 

classify different types of COVID-19 symptoms and their complications. Such imaging modalities include ultrasound, magnetic 

resonance imaging (MRI), computed tomography (CT) scan, and chest tomography (X-ray). Among them, ultrasound is mostly 

used in children because it is less affected by crying and body movement [6,7] and also less costly than other modalities. However, 

ultrasound images are unable to visualize the whole lung and cannot identify consolidation when it is deep in the lung parenchyma 

[8]. Additionally, the spleen in the stomach can sometimes be misinterpreted as lung consolidation [9]. CT scanning is more 

reliable in many cases but not recommended for routine diagnosis and for children and pregnant women due to high radiation risks. 

It is also an expensive imaging modality and is sparsely available in many local hospitals and healthcare centers [10]. MRI can be 

used to avoid the radiation risks of CT scanning [11,12]. Moreover, due to a cross- sectional imaging technique, MRI is useful to 
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identify severe cases of pneumonia. However, MRI scanning is challenging with children who are too young to cooperate 

[13,14], and more than often sedation or anesthesia is required, which is highly discouraged. Moreover, the sparse availability of 

expert radiologists in local healthcare facilities to interpret the MRI results makes it less usable on many occasions. X-ray is one 

of the common practices for diagnosing many lung-related diseases due to its availability in many countries and healthcare 

facilities. It is also cheaper and faster compared to CT and MRI. However, unlike MRI imaging modality, X-ray is a two-

dimensional image and offers less information in general. In this work, we use X-ray images dataset as it is primarily used to 

diagnose COVID-19. 

With recent advancements in artificial intelligence (AI) and deep learning (DL) meth- ods, many DL-based computer-aided 

diagnosis (CAD) systems and other computer vision methodologies are introduced to help medical experts, practitioners, 

radiologists, and doctors diagnose various medical data [15–18]. In the literature, the roles and contributions of such CAD systems 

are already well established. For example, in recent years, DL-based CAD systems have been widely used to diagnose numerous 

diseases, such as brain cancer, lung cancer, breast cancer, skin cancer, ophthalmology, and even day-to-day healthcare practices 

[19–23]. The integration of such DL-based methodologies into disease diagnosis is also called radiomics or deep radiomics, 

which is an emerging field of study [24–29]. Moreover, research work done in translational medicine [30,31] addressed how to 

fill the gap between medical-clinical practices with other basic sciences such as computer science. Translational medicine is 

helpful to employ advancements in DL methods into radiology and other clinical practices. Additionally, as demonstrated by 

recent studies [32,33], some DL-based object detection and segmentation models can potentially perform as well as radiologists 

or even outperform them in standalone mode by producing reliable and accu- rate results [23]. Several studies have shown such 

CAD systems can be used to diagnose COVID-19 and induced pneumonia using X-ray images [34–46]. Moreover, the 

introduction of more and more radiomics methods in recent years contributed to the wide integration and employment of AI 

methods in medicine, from segmentation models to detection and classification models [24–28]. This trend is presented by 

Roy et al. [24] and an overall review of the employment of AI models in various medical applications is discussed. 

In this study, based on the knowledge of the current literature, we design and develop a DL-based CAD system to diagnose and 

classify COVID-19-infected pneumonia from chest X-ray images. Pneumonia diagnosis using X-ray images includes correctly 

identifying key features and biomarkers, classifying the disease and corresponding abnormalities into proper categories, and using 

these findings to distinguish between viral and bacterial or mixed bacterial-viral infections. Even though there are many 

existing research studies regarding the diagnosis of pneumonia and COVID-19-induced pneumonia from X-ray images in the 

literature, the majority of these studies used small-to-medium X-ray samples of COVID-19-infected pneumonia cases [34–36,38–
44]. However, with the overall develop- ment of deep learning models and the introduction of larger X-ray image datasets, it is now 

possible to design and develop more accurate and highly efficient DL-based CAD systems. In this work, we propose an end-to-

end DL-based CAD model to diagnose and classify X-ray images into three classes, such as COVID-19-infected pneumonia, 

non-COVID-19 infections (other viral and bacterial pneumonia), and normal (uninfected) images. We address the limited 

data problem by employing a large X-ray image dataset and push the performance and training time of the proposed DL 

models further by employing transfer learning and parallel computing techniques. We use the COVID-QU-Ex dataset [47] 

con- sisting of 33,920 chest X-ray images that belong to a total of three classes. The dataset is collected from 10 different 

datasets by the researchers of Qatar University and is openly available to the public. The dataset is fairly balanced consisting of 

11,956 COVID-19 cases, 11,263 non-COVID-19 infections (other viral and bacterial pneumonia), and 10,701 normal (uninfected) 

X-ray images. Our key contribution in this work is twofold. Firstly, we employ deep transfer learning techniques to train several 

well-known convolutional neural network (CNN) based models for faster convergence. Based on the literature review and 

experi- mental results obtained by research work [36,37,47], we have selected two best-performing model architectures, namely 

VGG19 [48] and ResNet50 [49]. Using these architectures, we train each model on the COVID-QU-Ex dataset and evaluate 

their performance. Secondly, we propose a parent–child parallel training mechanism to accelerate the training process. In this 

training mechanism, the dataset is divided into several portions and trained by child nodes parallelly and corresponding trained 

parameters (i.e., weights and biases) are passed to the parent node. The parent node then combines these parameters and 

redistributes them to child nodes. Such training methods are especially beneficial when multiple models need to be trained on 

large datasets such as COVID-QU-Ex. Even though these contributions are not novel in computer engineering, their combination 

presents novelty in the context of DL-based CAD systems for medical data diagnosis. 

The remaining structure of this paper is as follows. Section 2 discusses related works in the literature on pneumonia and COVID-

19 diagnosis. Section 3 explains the proposed parallel computing and transfer learning mechanisms. Section 4 describes the 

experiment environment, evaluation metrics, and the dataset used in this study. We also demonstrate experiment results, findings, 

and comparisons of our models. Comparisons and discussions are shown in Section 5. Finally, Section 6 concludes the paper. 

2. Related Literature 

In recent years, DL-based CAD systems have been widely used to diagnose numerous diseases in radiology, oncology, and 

pulmonology. Among them, we will discuss related methods that use chest X-ray images. Even though there are many 

proposed works to diagnose COVID-19 and other pneumonia types in the literature, they differ a lot in terms of CAD system 

design, network structure, and datasets. Therefore, it is difficult to assess the performance of each method and perform a one-

to-one comparison. For example, Narin et al. [38], Minaee et al. [39], Hemdan et al. [40], and Sethy et al. [41] proposed 

different CNN-based diagnosis systems.  However, the dataset used in their study was too small. Narin et al. [38] obtained 

98% accuracy with ResNet50 using 50 normal and 50 COVID-19 X-ray images. Hemdan et al. [40] proposed a COVIDX-Net 

model. In the experiments, they obtained 90% classification accuracy using a total of 50 images (25 normal and 25 COVID-19). 
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With the same dataset, Sethy et al. [41] obtained 95.4% classification accuracy. They employed the ResNet50 model with 

support vector machines (SVM). In comparison, Minaee et al. [39] used a larger dataset, containing 100 COVID-19 and 5000 

non-COVID-19 X-ray images. Their proposed Deep-COVID model obtained 97.5%  and 90% sensitivity score and 

specificity score, respectively. Even though the dataset is larger in comparison to prior work, the dataset used by [39] is highly 

imbalanced. 

Oh et al. [42] proposed ResNet18-based model and obtained 88.9% accuracy. Even though they used only 502 sample 

images, the dataset contains five classes (191 normal, 54 bacterial, 20 viral, 57 tuberculosis, and 180 COVID-19 cases). 

Khan et al. [36], Apostolopoulos et al. [43], and Ozturk et al. [44] used around 1200–1500 X-ray image data belonging to 

two-three classes. Apostolopoulos et al. [43] obtained 98.8% accuracy using various networks including VGG19, MobileNet, 

and Incep- tion network architectures. Ozturk et al. [44] proposed the DarkCovidNet model. Using 1625 X-ray images, they 

achieved 87% accuracy. Khan et al. [36] trained VGG16 and VGG19 models using transfer learning and obtained 99.4% 

classification accuracy using 1683 X-ray images. Even though they obtained great results, the dataset used in their work 

contains only two classes, normal and COVID-19 with 200 test images. 

Wang et al. [45], Narayanan et al. [46], and Brima et al. [37] used relatively big datasets containing more than 5800 X-ray images. 

Narayanan et al. [46] trained ResNet50, Incep- tionv3, Xception, and DenseNet201 models using 5658 total images. The best-

reported result was 98% accuracy. Wang et al. [45] used a total of 13,975 images to train VGG19 and ResNet50 models. By 

employing transfer learning, they achieved 93.3% classifica- tion accuracy across three classes,  such as normal,  COVID-19,  

and pneumonia.  Brima et al. [37] obtained the best accuracy of 94% from VGG19, DenseNet121, and ResNet50 using the 

COVID-19 Radiography Database. This dataset is one of the biggest datasets in the literature and contains 21,165 chest X-ray 

images across four classes (3616 COVID-19, 10,192 normal, 6012 lung opacity, and 1345 viral pneumonia images). The dataset 

is not well balanced, but it contains a larger number of samples and more classes compared to other datasets. 

In this work, we use an even bigger dataset called COVID-QU-Ex dataset with more than 33,900 well-sorted and filtered X-ray 

images. Moreover, the COVID-QU-Ex dataset is fairly balanced with around 11,000 images per class. According to the 

experimental results and findings from the discussed literature, VGG19 and ResNet50 network architectures are found to be the 

most effective in diagnosing and classifying chest X-ray image data. Therefore, we employ these two networks in this study. 

3. Proposed Methodology 

The overall process of the proposed DL-based CAD method is shown in Figure 1. In this study, we use two popular CNN-

based deep network architectures to evaluate their performance on the COVID-QU-Ex dataset. The initial networks were 

trained on the ImageNet classification dataset with over a million images. We then employ a transfer learning technique to 

learn X-ray image data. Moreover, during training, we further accelerate the training process by employing a parent–child 

parallel computing mechanism. Each mechanism is explained in detail in the following sections. 

 

Figure 1. The overall flowchart of the method. The pretrained ResNet50 or VGG19 model and the target data which are X-ray 

images are received. Then, new data is generated using data augmentation steps. To speed up the network training, the input 

dataset is divided into portions and each child node is trained on that data portion. Finally, network parameters are optimized 

for the target data. 

 Data Preprocessing 

Generally, data preprocessing is used to filter, clean, and augment the dataset before training. Since the COVID-QU-Ex dataset 

is already cleaned by eliminating duplicates and low-quality images, we only use data augmentation at this stage. Data 

augmentation refers to the concept of generating new data using the existing data by applying some steps. Popular data 

augmentation methods are resizing, flipping the image horizontally and vertically, zooming, cropping, and rotating the image. 

However, since the purpose of this work is to diagnose X-ray images, cropping, flipping vertically, and zooming methods are 

not suitable. Therefore, we only use resizing, horizontal flipping, and rotation. 

All images are resized into 256 256 3 dimensions. For rotation, up to 12-degree rotation is used to keep the image alignment. For 

every image, one rotation or horizontal flip is randomly applied during training. No data augmentation is performed for validation 

and test images. 

 Transfer Learning 

The overall workflow of transfer learning is illustrated in Figure 2. When transferring the knowledge of the network from the source 

domain to the target domain, the initial layers of the deep neural network remain unchanged. In other words, initial convolutional 

layers are frozen, and the training is conducted to optimize the remaining network parameters for the target domain data. 
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Figure 2. Illustration of transfer learning. When the knowledge is transferred from source domain to the target domain, initial 

layers are frozen and later layers are trained on the target domain data. 

The transfer learning process consists of two stages. First, the network is trained on the source domain to achieve optimal 

performance on the test samples of the source domain. Secondly, the network parameters are fine-tuned (i.e., optimized) for the 

target domain by training the network on the training samples. Finally, the model is tested on the test samples of the target 

domain to evaluate the performance of the transfer learning for the target domain. 

Even though the target domain, which contains X-ray image data, and the source domain, which contains ImageNet data of 

various classes, these two domains share sim- ilarities for network training. The purpose of initial convolutional layers, which 

contain multiple filters, is to detect low-level and high-level features from input images. Low-level features include the detection of 

colors, lines, curves, edges and commonly known as edge detection, whereas high-level features include small objects, local 

surfaces and attributes. Additionally, together they make up for feature extraction, where the unique features of the input 

images are obtained. Later, these extracted features are combined in the fully connected layers to obtain different characteristics 

of the input image in order to distinguish several images from each other depending on the underlying differences of the present 

features. 

 Parallel Computing 

The concept of parent–child parallel computing method is demonstrated in Figure 3. Unlike serial training method which 

involves training whole dataset and updating network parameters at once, parallel training mechanism divides the dataset X into 

multiple portions, e.g., P portions, and then uses P child nodes to train all portions. 

 

Figure 3. Illustration of a parent–child parallel computing method. The dataset X is divided into P portions and each child node 

p trains the model using the sub-dataset it was assigned (Xp ). 

where Ep denotes the error function for the sub-dataset Xp. In this way, all child nodes compute updated weights and biases 

and transfer them to the parent node. The parent node updates the parameters of the network by processing the results 

transferred by the child nodes and again broadcasts the updated parameters to each child node, where child node resumes 

network training using its local data Xp. This procedure is repeated until the training process is finished. When the accuracy is 

not improved for several iterations, the learning rate α is reduced by a factor of 10 to further optimize the network parameters. 

Finally, the network parameters are fine-tuned for a few epochs to generalize the gradients and obtain optimal convergence. 

4. Experimental Environment 

Our method is implemented using Pytorch deep learning framework and the ex- periments are carried out on a local 

machine equipped with Nvidia Titan X Pascal 12 GB graphics processing unit. The effectiveness of the proposed DL-based 

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 555



 

CAD model is justified via several evaluation metrics. 

 Performance Evaluation Metrics 

The performance of the models is measured by calculating appropriate error functions. In this work, we used confusion matrix, 

classification accuracy, true positive rate, false positive rate, receiver operating characteristic (ROC) curve to evaluate the 

results and compare the performance of the models. 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. 

 Dataset 

The COVID-QU-Ex dataset was collected by the researchers of Qatar University and contains 33,920 chest X-ray images with the 

following class distribution: 

• COVID-19—11,956 samples; 

• Non-COVID infections (viral or bacterial pneumonia)—11,263 samples; 

• Normal (uninfected)—10,701 samples. 

As shown in Figure 4, the dataset is fairly balanced, therefore conducting exploratory data analysis or data augmentation for data 

balancing is not necessary on the dataset Moreover, DL models used in this research work, VGG19 and ResNet50, are 

capable of handling small class imbalance very well. Non-COVID infection cases represent 33% of the whole dataset, COVID-19 

cases represent 35% of the dataset, and normal (healthy) cases represent 32% of the dataset Figure 5 presents samples from 

each class for comparison, where each class sample is randomly selected from the dataset Table 1 shows the summary of dataset 

training, validation, and test splits. 

As shown in Table 1, there are 21,715 training X-ray images, 5417 validation images, and 6788 test images. Validation images 

are used to validate the model performance during training and test images are used to evaluate the performance of the final 

models. Test images are not used during training in any way for a fair evaluation of the model performance. 

 Numerical Results 

This section presents experiment results and findings on two selected network archi- tectures: VGG19 and ResNet50 due to their 

prior success in similar datasets in the literature. Both networks are trained for 180 epochs using transfer learning and parallel 

computing mechanisms explained in the previous section. For fairness, we trained models for the same epochs using the same data 

preprocessing steps and training data. The best model is saved at a certain iteration when it achieves the best results on the 

validation dataset. Among all saved models, the best model is selected to perform tests. In the experiments, we omit the 

ablation studies on how parallel computing accelerates the training time since it has already been validated and justified in the 

literature. Moreover, the purpose of employing a parallel computing technique is to avoid training the model using one node. 

Additionally, in order to show the improvements, the models need to be trained in the serial method, which takes about 50–
60% longer time [50]. 

 

Figure 4. The distribution of X-ray images per class. 
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Figure 5. Samples from COVID-QU-Ex dataset From left to right: normal, non-COVID 

infection, COVID-19. 

Table 1. The dataset summary across different classes and train-validation-test splits. 

 

Dataset Normal Non-COVID 

Infections 

COVID-

19 

Total 

Train 6849 7208 7658 21,715 
Validatio

n 
1712 1802 1903 5417 

Test 2140 2253 2395 6788 

 
Firstly, we analyze the training accuracy and training loss of VGG19 and ResNet50 models. Figure 6 shows the accuracy plots for 

VGG19 and ResNet50 models. In the COVID- QU-Ex dataset, VGG19 outperformed the ResNet50 model with better training 

convergence. Figure 7 shows a scaled version of the same training plots for better readability. In both figures, the x-axis denotes 

the iteration of the training and the y-axis denotes accuracy. We used iterations instead of epochs as the model can improve 

within the duration of the epoch. 

 

 

 

Figure 6. Training accuracy plots of VGG19 and ResNet50 models. Sudden jumps highlighted 

with red arrows refer to the learning rate decrease. 

 

Figure 7. A scaled training accuracy plots of VGG19 and ResNet50 models. Sudden jumps 

highlighted with red arrows refer to the learning rate decrease. 
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The VGG19 model achieved the best training accuracy of 98.75%, whereas ResNet50 achieved 98.02%. In the plots, sudden 

jumps highlighted in red refer to the learning rate decrease. In our proposed CAD model, the learning rate is decreased by a factor 

of 10 if the model does not improve accuracy for a while. The learning rate change plots for VGG19 and ResNet50 models 

are shown in Figure 8, where the learning rate for both models decreased three times. However, the learning rate for ResNet50 

decreased earlier, which indicates that the VGG19 model improved for more iterations compared to ResNet50. This can also be 

seen in the training accuracy plots, where the convergence of VGG19 is better than ResNet50. 

 

 

 
 

Figure 8. Learning rate change plots for VGG19 and ResNet50 
models. 

 
Figures 9 and 10 show training loss plots and scaled training loss plots for both models, respectively. Similar to previous plots, 

sudden jumping points are highlighted in red. From the figures, it is seen that the loss of VGG19 decreased more than the 

ResNet50 model, which is intuitive given that the accuracy plot of VGG19 showed better convergence in contrast to the ResNet50 

model. 

Next, we evaluate the performance of each model using a confusion matrix and ROC curves using a total of 6788 test X-ray 

images. Looking at the training accuracy plots and loss plots, it is hard to determine which model performs better on the test data. 

Figures 11 and 12 show the confusion matrix and ROC curves for the VGG19 model on the test dataset, respectively. The model 

correctly classified 97.2% of COVID-19 test samples, 96.7% of non-COVID pneumonia test samples, and 95.9% of normal 

(uninfected) test samples, achieving 96.6% of average classification accuracy across all three classes. Unusually, the VGG19 model 

wrongly classified 82 normal cases as non-COVID pneumonia infections and only 4 cases as COVID-19. 74 cases of non-COVID 

pneumonia cases were misclassified, where 53 of these cases were classified as normal and 21 cases were classified as COVID-19. 

Similarly, 68 cases of COVID-19 were misclassified, of which 31 of them were classified as normal and 37 cases were classified as 

non-COVID infections. In general, among all these three classes, the rate of misclassification as COVID-19 is very low which 

indicates a high precision score of 0.99 for COVID-19. This can also be supported by the ROC curve shown in Figure 12. The 

area under the curve (AUC) score for COVID-19 is higher than the rest of the classes with a score of 0.98. In comparison, an 

AUC score of non-COVID pneumonia and normal cases showed 0.97 each. 

Additionally, for all classes, lines in the ROC curve are fairly straight and the turning corners are sharp. This indicates that the 

model not only correctly classifies the test images but also does it with high confidence scores (e.g., close to 1 when positive, 

close to 0 when negative). In comparison to precision scores, the advantage of the ROC curve is that it maps true positive rate 

to the false positive rate. The performance of the VGG19 network validates that the DL-based CAD model can identify the 

difference between COVID-19, non-COVID viral or bacterial pneumonia, and healthy cases well with high performance. In 

the next experiment, we evaluate the performance of the ResNet50 model using 6788 test X-ray images. Figures 13 and 14 

show a confusion matrix and ROC curves for the ResNet50 model on the test dataset, respectively. From Figure 13, it is seen that 

the model 
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correctly classified 96.6% of COVID-19 test samples, 95.4% of non-COVID pneumonia test samples, and 95.5% of normal 

(uninfected) test samples, achieving 95.8% of average classification accuracy across all classes, which is 0.8% lower than the 

average classification accuracy of VGG19 model. Similar to the VGG19 model, the rate of misclassification as COVID-19 in 

the ResNet50 model is very low which indicates a high precision score of 0.99 for COVID-19 (the same as VGG19). In 

comparison to VGG19′s 74 cases, 104 cases of non- COVID pneumonia were misclassified, where 86 of these cases were 

classified as normal and 18 cases were classified as COVID-19. Although the number of misclassifications is higher in total, 

in ResNet50, fewer cases of non-COVID infections were misclassified as COVID-19. A total of 81 cases of COVID-19 were 

misclassified, of which 49 of them were classified as normal and 32 cases were classified as non-COVID infections. 

Moreover, the lines in the ROC curve shown in Figure 14 are not as straight as those of VGG19 which indicates that the 

confidence scores for the predictions are lower than that of VGG19. This means, VGG19 not only outperforms ResNet50 in terms 

of accuracy of correct classification but also does it with higher confidence. 

 

Figure 9. Training loss plots of VGG19 and ResNet50 models. The red arrows refer to the 

learning rate decrease which result in sudden change in the loss function. 

 

Figure 10. A scaled training loss plots of VGG19 and ResNet50 models. The red arrows refer 

to the learning rate decrease which result in sudden change in the loss function. 
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Figure 11. Confusion matrix for the VGG19 model on the test dataset. 

 

Figure 12. ROC curve for the VGG19 model on the test dataset. 

 

Figure 13. Confusion matrix for the ResNet50 model on the test dataset. 
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Figure 14. ROC curve for the ResNet50 model on the test dataset. 

Even though ResNet50 results fall short in comparison to the performance of the VGG19 network, ResNet50 still shows great 

results in classifying test images into COVID- 19, non-COVID viral or bacterial pneumonia, and healthy cases, achieving 95.8% 

of average classification accuracy across all classes. 

5. Comparison and Discussion 

Table 2 shows the comparison between our proposed models and the existing works in the literature. The study reference, 

datasets used (with the number of classes and the sample size), the proposed methodology/model, and the reported accuracies are 

presented in the table. In this study, we achieved 96.6% test accuracy with the VGG19 model across three classes. In Table 2, 

we only listed related work with more than 1000 images used in their studies, except the study conducted by [42]. This is 

because Oh et al. [42] used four classes in total. There is another study [37] that used four classes (normal, pneumonia, lung 

opacity, and COVID-19). Moreover, the study conducted by Brima et al. [37] used a total of 21,165 X-ray images, the second 

largest dataset in Table 2. They used a total of three models, VGG19, DenseNet121, and ResNet50, in the experiments and 

achieved 94% test accuracy with the VGG19 network architecture. Wang et al. [45] used the third biggest dataset with 13,962 

X-ray samples and achieved 93.3% test accuracy with their COVIDNet model. However, their dataset is not balanced with 

COVID-19 samples representing only 2.6% of the whole dataset. Ozturk et al. [44] also used a fairly imbalanced dataset and 

achieved 87% accuracy with their DarkCovidNet model. Narayan et al. [46], Apostolopoulos et al. [43], and Khan et al. [36] 

achieved classification accuracy higher than our proposed model, with 98%, 98.75%, and 99.38% accuracy, respectively. However, 

they used small samples of test images to evaluate their model performance. Especially, Khan et al. 28] achieved the best 

accuracy of 99.38% with only 200 test images belonging to two classes, 100 normal and 100 COVID-19. 

Even though our model did not achieve the highest performance in terms of clas- sification accuracy, we believe the proposed 

methodology in this study has the overall best accuracy. This is because we used the largest datasets with over 33,900 X-ray 

images that belong to three classes. Additionally, we evaluated the performance of our VGG19 and ResNet50 models using a 

test-set with over 6780 test samples which is more than the entire dataset size of most of the proposed methods. In comparison 

to two of the studies with over 10,000 X-ray samples, Wang et al. [45] (with an accuracy of 93.3%) and Brima 
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et al. [37] (with an accuracy of 94%), our model VGG19 showed superior performance with a classification accuracy of 96.6%. 

 
 

The overall comparison results showed that VGG19 and ResNet50 network archi- tectures are generally best-suited in diagnosing 

COVID-19 and pneumonia cases using X-ray images, with VGG19 being a little more superior in many research studies. 

Addition- ally, these two network architectures are the most selected architectures by other works, followed by various types of 

Inception and DenseNet network architectures. 

Finally, it is seen from the comparison that, generally, DL-based CAD systems can be used to assist radiologists, doctors, and 

medical experts in the diagnosis of COVID-19-infected pneumonia and other types of viral and bacterial pneumonia, as they (i.e., 

top-performing models) achieved more than 93% reported accuracy. 

6. Conclusions 

This paper presented an end-to-end DL-based CAD method to diagnose COVID-19- infected pneumonia. We employed transfer 

learning and parent–child parallel computing methods to accelerate the training process. Experiment results on VGG19 and 

ResNet50 network architectures validated the feasibility of employing a DL-based model for the diagnosis of COVID-19 and other 

viral and bacterial pneumonia using X-ray images. On a large COVID-QU-Ex dataset with 33,920 X-ray samples, the VGG19 

model showed superior performance in comparison to ResNet50, with 96.6% average classification accuracy across all three 

classes. VGG19 model also achieved 0.98 ROC-AUC score for COVID-19 along with 97.2% accuracy and 0.99 precision score. In 

comparison to the discussed related work, our methodology shows superior performance. Firstly, our experiments are conducted on 

the largest dataset of 33,920 images (the second largest contains 21,165 images). Additionally, secondly, we obtained an average 

of 96.6% classification accuracy in comparison to 94% of Brima et al. [37] and 93.3% of Wang et al. [45]. 

The results show that the proposed DL-based method can be used to assist medical professionals in the diagnosis of pneumonia 

infected by COVID-19 and other types of viral and bacterial pneumonia. Even though the proposed method showed great 

performance in the diagnosis of pneumonia using X-ray images, there is room for future improvements. In future work, the 

performance of diagnosis using MRI and CT scan modalities should be studied and respective experiments should be carried 

out. Additionally, in this work, parallel computing is applied to only data distribution between child nodes to speed up the 

training process. In the future, both data-distributed and model-distributed computing mechanisms should be implemented to further 

accelerate the training. Lastly, most existing research studies (including this study) used VGG19 and ResNet50 networks. In the 

future, more customized network architectures (specially designed for X-ray images) should be studied. 

 

References 

1. COVID-19 Worldwide Statistics. Available online: https://www.worldometers.info/coronavirus/ (accessed on 14 November 
2022). 

2. Coronavirus and  Pneumonia.  Available  online:  https://www.webmd.com/lung/covid-and-pneumonia#1  (accessed  

on 14 November 2022). 

3. Gray, D.; Willemse, L.; Visagie, A.; Czövek, D.; Nduru, P.; Vanker, A.; Zar, H.J. Determinants of early-life lung 
function in African infants. Thorax 2017, 72, 445–450. [CrossRef] [PubMed] 

4. Chan, J.Y.; Stern, D.A.; Guerra, S.; Wright, A.L.; Morgan, W.J.; Martinez, F.D. Pneumonia in childhood and impaired 
lung function in adults: A longitudinal study. Pediatrics 2015, 135, 607–616. [CrossRef] [PubMed] 

5. Cecilie, S.; Sunyer, J.; Plana, E.; Dharmage, S.; Heinrich, J.; Jarvis, D.; de Marco, R. Early life origins of chronic 
obstructive pulmonary disease. Thorax 2010, 65, 14–20. 

6. Zar, H.J.; Andronikou, S.; Nicol, M.P. Advances in the diagnosis of pneumonia in children. BMJ 2017, 358, j2739. 
[CrossRef] 

7. Iuri, D.; De Candia, A.; Bazzocchi, M. Evaluation of the lung in children with suspected pneumonia: Usefulness of 
ultrasonography. 

La Radiol. Med. 2009, 114, 321–330. [CrossRef] [PubMed] 

8. Tomà, P.; Owens, C.M. Chest ultrasound in children: Critical appraisal. Pediatr. Radiol. 2013, 43, 1427–1434. [CrossRef] 
9. Shah, V.P.; Tunik, M.G.; Tsung, J.W. Prospective evaluation of point-of-care ultrasonography for the diagnosis of 

pneumonia in children and young adults. JAMA Pediatr. 2013, 167, 119–125. [CrossRef] [PubMed] 
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