DETECTING ELECTRICAL THEFT IN SMART GRIDS USING MACHINE LEARNING

¹ K.Venkata Ramaiah, Associate Professor, Department of CSE, Chalapathi Institute of Technology, Guntur.
 ² Yechuri Bhavyasri, B.Tech, Department of CSE, Chalapathi Institute of Technology, Guntur.
 ³ Pabolu Lakhsmi Manasa, B.Tech, Department of CSE, Chalapathi Institute of Technology, Guntur.
 ⁴ Mupparaju Anusha, B.Tech, Department of CSE, Chalapathi Institute of Technology, Guntur.
 ⁵ Valeti Chanakya Siva Phanish, B.Tech, Department of CSE, Chalapathi Institute of Technology, Guntur.

Abstract: Electricity theft is a global problem that negatively affects both utility companies and electricity users. It destabilizes the economic development of utility companies, causes electric hazards and impacts the high cost of energy for users. The development of smart grids plays an important role in electricity theft detection since they generate massive data that includes customer consumption data which, through machine learning and deep learning techniques, can be utilized to detect electricity theft. This paper introduces the theft detection method which uses comprehensive features in time and frequency domains in a deep neural network-based classification approach. We address dataset weaknesses such as missing data and class imbalance problems through data interpolation and synthetic data generation processes. We analyze and compare the contribution of features from both time and frequency domains, run experiments in combined and reduced feature space using principal component analysis and finally incorporate minimum redundancy maximum relevance scheme for validating the most important features. We improve the electricity theft detection performance by optimizing hyper parameters using a Bayesian optimizer and we employ an adaptive moment estimation optimizer to carry out experiments using different values of key parameters to determine the optimal settings that achieve the best accuracy. Lastly, we show the competitiveness of our method in comparison with other methods evaluated on the same dataset. On validation, we obtained 97% area under the curve (AUC), which is 1% higher than the best AUC in existing works, and 91.8% accuracy, which is the second-best on the benchmark.

1. INTRODUCTION

ELECTRICITY theft is a problem that affects utility companies worldwide. More than \$96 billion is lost by utility companies worldwide due to Non-Technical Losses (NTLs) every year, of which electricity theft is the major contributor [1]. In sub-Saharan Africa, 50% of generated energy is stolen, as reported by World Bank [2]. The ultimate goal of electricity thieves is to consume energy without being billed by utility companies [3], or pay the bills amounting to less than the consumed amount [4]. As a result, utility companies suffer a huge revenue loss due to electricity theft. [5] reports that in 2015, India lost \$16.2 billion, Brazil lost \$10.5 billion and Russia lost \$5.1 billion. It is estimated that approximately \$1.31 billion (R20 billion) revenue loss incurred by South Africa (through Eskom) per year is due to electricity theft [2].Apart from revenue loss, electricity theft has a direct negative impact on the stability and reliability of power grids [3]. It can lead to surging electricity, electrical systems overload and public safety threats such as electric shocks [4]. It also has a direct impact on energy tariff increases, which affect all customers [3]. Implementation of smart grids comes with many opportunities to solve the electricity theft problem [4]. Smart grids are usually composed of traditional power grids, smart meters and sensors, computing facilities to monitor and control grids, etc., all connected through the communication network [6]. Smart meters and sensors collect data such as electricity usage, grid status, electricity price, etc. [6]. Many Utilities

sought to curb electricity theft in traditional grids by examining meters' installation and configurations, checking whether the power line is bypassed, etc. [4]. These methods are expensive, inefficient and cannot detect cyber attacks [4], [7]. Recently, researchers have worked towards detecting electricity theft by utilizing machine learning classification techniques using readily available smart meters data. These theft detection methods have proved to be of relatively lower costs [8]. However, existing classification techniques consider time-domain features and do not regard frequency-domain features, thereby limiting their performance. Regardless of the fact that there is active ongoing research on electricity theft detection, electricity theft is still a problem. The major cause of delay in solving this problem may be that smart grids deployment is realized in developed nations while developing nations are lagging behind [9]. The challenges of deploying smart grids include the lack of communication infrastructure and users' privacy concerns over data reported by the smart meters [10]. However, [10] reports that smart meters are being considered by many developed and developing countries with aims that include solving NTLs. [11] predicted smart grids global market to triple in size between 2017 and 2023, with the following key regions leading smart grids deployment: North America, Europe and Asia. In this paper, we present an effective electricity theft detection method based on carefully extracted and selected features in Deep Neural Network (DNN)-based classification approach. We show that employing frequency-domain features as opposed to

using time-domain features alone enhances classi_cation performance. We use a realistic electricity consumption dataset released by State Grid Corporation of China (SGCC) accessible at [12]. The dataset consists of electricity consumption data taken from January 2014 to October 2016.

2. LITERATURE SURVEY

2.1 Q. Louw and P. Bokoro, "An alternative technique for the detection and mitigation of electricity theft in South Africa," SAIEE Afr. Res. J., vol. 110, no. 4, pp. 209_216, Dec. 2019. [3] M.Anwar, N. Javaid, A. Khalid, M. Imran, and M. Shoaib, "Electricity theft detection using pipeline in machine learning," in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC), Jun. 2020, pp. 2138_2142

Electricity theft and illicit ground surface conductor connections are widespread in South Africa. This phenomena not only causes revenue loss and equipment damage, but it also poses a life-threatening hazard. Despite decades of research into non- technical losses, no general solution has been given due to the problem's complexity. This research studies the use of zero-sequence currentbased detection as a mitigation approach for dealing with unauthorized ground surface conductor connections. The validity of this technique, as well as its influence on seasonal changes in soil resistivity, is demonstrated by simulation and experimental data.

2.2 Z. Zheng, Y. Yang, X. Niu, H.-N. Dai, and Y. Zhou, "Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids," IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1606_1615,Apr. 2018.

Power grids suffer as a result of electricity theft. Due to the abundance of data generated by smart grids, smart grids can assist in addressing the issue of electricity theft by integrating energy and information flows. Because energy thieves have an unusual pattern of using electricity, data analysis on smart grid data can be helpful in identifying thefts. However, due to the fact that the majority of them were conducted on one-dimensional (1-D) electricity consumption data and failed to capture the periodicity of electricity consumption, the existing methods have poor detection accuracy of electricity theft.

To address the aforementioned concerns, we initially propose a novel electricity-theft detection method based on the wide and deep CNN model in this paper. In particular, there are two parts to the wide and deep CNN model: the deep CNN component in addition to the wide component. Based on 2-D electricity consumption data, the deep CNN component is able to precisely identify the periodicity of normal usage and the nonperiodicity of electricity theft. In the meantime, 1-D electricity consumption data's global characteristics can be captured by the wide component. Consequently, the wide and deep CNN model can perform exceptionally well in electricity-theft detection. Extensive testing on a real-world dataset demonstrates that the wide and deep CNN model performs better than other methods currently in use.

3. EXISTING SYSTEM

Electricity theft is a global problem that negatively affects both utility companies and electricity users. It destabilizes the economic development of utility companies, causes electric hazards and impacts the high cost of energy for users. The development of smart grids plays an important role in electricity theft detection since they generate massive data that includes customer consumption data which, through machine learning and deep learning techniques, can be utilized to detect electricity theft. This paper introduces the theft detection method which uses comprehensive features in time and frequency domains in a deep neural network-based classification approach. We address dataset weaknesses such as missing data and class imbalance problems through data interpolation and synthetic data generation processes. We analyze and compare the contribution of features from both time and frequency domains, run experiments in combined and reduced feature space using principal component analysis and finally incorporate minimum redundancy maximum relevance scheme for validating the most important features.

DISADVANTAGES OF EXISTING SYSTEM

- An existing system not implemented dnn-based electricity theft detection method.
- An existing system not implemented hyperbolic tangent activation function.

4. PROPOSED SYSTEM

In propose paper we propose a novel DNN classificationbased electricity theft detection method using comprehensive time-domain features. We further propose using frequency-domain features to enhance performance. We employ Principal Component Analysis (PCA) to perform classification with reduced feature space and compare the results with classification done with all input features to interpret the results and simplify the future training process. We further use the Minimum Redundancy Maximum Relevance (mRMR) scheme to identify the most significant features and validate the importance of frequency-domain features over time-domain features for detecting electricity theft. We optimize the hyper parameters of the model for overall improved performance using a Bayesian optimizer. We further employ an adaptive moment estimation (Adam) optimizer to determine the best ranges of values of the other key parameters that can be used to achieve good results with optimal model training speed. Lastly, we show 1% improvement in AUC and competitive accuracy of our model in comparison to other data-driven electricity theft detection methods in the literature evaluated on the same dataset.

ADVANTAGES

• High Accuracy for detecting electricity theft detection.

SYSTEM ARCHITECTURE

5. DATASET:

We can collect the dataset from the kaggle.com site and placed into our project folder.

-	the Parent Ad	-		-	-		-	-	Di Bari	-	DI MARCO	-	-					THE OWNER	R		-	
35.35033	12-9982.8	42.4732	TUDIAR	140.670	*******	AL-PARTER	106 011	#1.000#	414 THE	111.000	600 6350	10.43334	ATTENTS A	NI-PARTY NI-PH	a v hi-ma	AT AL-PMY.	AL COTTO	411 1010	110 54 30	13 14343	100 000	1
70.32232	127075.1	47.3723	111040	109.578	321123.0	31.03173	403 5035	-37.0000	100.000	173.369	444,3003	70.92224	12/0/3.1	0	0		1 00.00779	455 37.44	118.3079	13.18392	100.005	Ċ,
73.0001	13028007	-40.3007	130233.0	-200.278	13033333	14 80400	483,5933	-32.94/4	500.985	107.487	461.3052	73.70329	131003.4	0	0	0	3 31 10979		125, 1929	10.62008	-23.8043	÷
73.73094	130303.0	49.2540	130290.7	363,000-	110081	73.4000	483.5935	-26.913	500.989	101/441	401.03	73.73113	130030.3	0	0		71.13271	453,3544	125.0079	0.02008	-74.5208	ċ.
74.000944	130381.0	43,8990	130136.5	1003.003	130036.8	72.13238	402.0011	-30,45/3	400.13/3	107.200	481,2002	74.00030	130081.0	0	0		71,000	407.0213	121.3977	3.0483	190.000	-
/4.35027	1202067-1	-45.4241	131038	-100.424	131136.3	72.5362	404.5091	-30,0115	497.093	-107,404	484,0922	74.57940	131108-1			-	1 12 33931	455,9007	151.0002	7.50751	-99.9238	
74.34/34	110038	-43.4413	131032.9	100.442	131133.4	71.78015	480.5233	-30,1790	498.0092	107.791	466,5233	74.55327	131008		0		71.20445	490.1800	125.2027	0.77307	-100.772	
/4.53008	150007.8	-45,4503	130007.6	-100,400	131083.1	12.07329	467.0720	-30.1834	497.6703	-107.877	467,0120	74.54/24	132032.9	0	0		1 71.20147	+40.3517	172,2031	6.40580	-100.841	
74.5017	130582.8	45,4757	130957.7	-165 533	131058	71.52805	487.9882	-50,1911	498.0092	108.001	480,0229	74.55889	132007.8	0	0	0	71.09833	491.101	112 6535	5.63641	100 474	
74.76102	1108524	45 7163	110957.4	145 106	1100111.6	33 24650	401 6504	64,6333	400.345	100.10	403 6646	74 39350	1350070-7	0	0		1 10 14461	104 0462	110 6721	3.6635	100.004	
74.08013	130837.4	-45.7103	13083774	-145 804	130332.4	33.00673	454 3135	-50/0525	440 5343	108.863	454. 3383	74.28376	135652.3	0	0	0	40 10111	491,9103	123.0123	370022	-116 738	
22 88964	130833.3	45.0997	120807.3	166 106	110007.5	63 66 164	407 603	51.211	5/4 1661	135.415	410.1533	70.0001	13/06714	0	0		60.11643	410 341			-110.125	
73.55504	130832.3	-40.0607	130807.2	-100.095	190907.5	09.59281	497.093	-31.211	301.3554	-1/0.415	499.13/9	73.9001	130857.4	0	0	0	0 095 01040	499.341	0			
73.70529	150807.2	-46,2893	190807.2	-196.272	190907.5	69.17163	498,7919	-31,4966	501.1/21	-170.796	500.0734	73.72675	190832.3	0	0	0	0 68,98412	499,8905				
73.88237	130812.3	-40.3122	130807.2	-100.29	110/07/5	69.0129298	498.9748	-01/4459	501.3554	-170.810	500.4399	73.89383	130832.3	0	0		1 08.94974	500.7565				
73.00572	150852.5	-45.5408	1,53907.2	-106.341	190907.5	69.05287	498.9748	-01.3204	301.3352	-1/0.948	500.4399	73.60945	190807.4	0	0	0	3 56.8035	500.2565				
73.41338	130832.3	-46.3815	130781.7	-186.57	190407.5	68.99859	300.2593	-01.7324	SCOLEDYS	-171,489	993.3092	73.42434	130832.3	0	0	0	3 88,48095	500.8059				
73.20682	1.90852.5	-40.782	130807.2	-206.782	190907.5	08.30552	500.989	-01.8/20	500,8059	-1/1.807	501.5383	75.21828	190832.3	0	0	0	3 68.22781	501.1721				
73.20109	150852.5	-46,7935	130/81.2	-166,782	150707.5	68.55524	500.8059	-51.9214	300.6227	-1/1.801	501.5383	73.25828	190832.3	D	0		0 68.12781	500.989				
73.09223	130832.3	-45.8737	190907.2	-268.382-	130882.5	68.23927	500.989	-01.9558	300.8039	-1/1.95	501.5383	73.20941	130832.3	0	0	0	0 68.11322	501.1721				
73.08377	150852,5	-46.8909	150807.2	-100.908	130907.5	68.21063	501.1721	-52.0188	500.8059	-1/1.968	501.5583	73.09223	130807.4	0	0	0.	3 68.07885	501.1721				
77.48108	188289.5	-42,4909	155264.4	-162,508	133954.7	78.22593	281,4401	-42.0207	280.1581	-162.018	281.257	77,49234	133314.0	0	0	0	1 /8.05977	2892.8907	0			
75.82907	13,3380	-40.542	152035.8	-200.359	15/101.2	80.07658	281.5694	-40.0841	280,8907	-100.205	281.8232	79.64686	1320893	D	0	0	3 79.92701	281.62.52				
85.58217	152311.6	-54.5837	152/86.6	-154.595	152.555.9	85.70305	281.8955	-34.0795	280, 2026	-154.286	279.7921	85.40509	13/398.7	0	0	0	1 85.77751	280.7076	0		0	
82.11011	132280.0	-34,641	132261.5	-134,641	132301.8	85.02856	281.6232	-34.1712	281.0799	-154.349	280.9414	85.34779	132311.0	0	0	0	1 85.70.921	281.0739				
83,20453	152261.5	-54.7671	152211.4	-154.767	152536.7	35.45085	281.8355	-34,2973	281,4401	-154,424	280.1583	85.22114	137261.5	D	0	0	3 85,58273	281.0739			0	
78.0082	131133.2	-41.9577	131083.1	-101.969	131183.3	75.02309	402, 2927	-44.7824	402,4758	-104.84	400.6617	78.02539	131130.2	0	0	0	0 75.13194	401,7433	0			
77.92604	15110B.1	-42.0093	131083.1	-162.001	131158.3	74.98872	402.1096	-44.8539	402.6581	104,885	400.8278	77.97936	131108.1	D	0	0	1 75.09758	411.9785				
77.1540	132007.8	-42.8114	130982.8	-162.823	131058	/4.15ZZ	402.6589	-45.6762	403.2082	-103.005	400.194	77.1/742	131001/8	0	0	Q	1 14.27252	402.2927	0		0	
76.90812	131208.4	-43.0578	111183.3	-163.07	111281.4	71,94112	402,1096	-43,8996	402.842	-145.86	400.4655	70.93206	111233.5	0	0	0	0 74.07771	401.7433	0		0	

Table 5.1: Electricity data

6. UML DIAGRAMS

1. CLASS DIAGRAM

The cornerstone of event-driven data exploration is the class outline. Both broad practical verification of the application's precision and fine-grained demonstration of the model translation into software code rely on its availability. Class graphs are another data visualisation option.

The core components, application involvement, and class changes are all represented by comparable classes in the class diagram. Classes with three-participant boxes are referred to be "incorporated into the framework," and each class has three different locations:

• The techniques or actions that the class may use or reject are depicted at the bottom.

SmartGridAttack
🗣 filename
🚭 Х, Ү
🚭 dataset
🕏 classifier
X_train, X_test, y_train, y_test
◆upload() ◆processDataset() ◆runKNN() ◆runSVM()
<pre> •logisticRegression() •detectAttack() •graph()</pre>

Fig 6.1 shows the class diagram of the project

2. USECASE DIAGRAM:

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram defined by and created from a Use-case analysis. Its purpose is to present a graphical overview of the functionality provided by a system in terms of actors, their goals (represented as use cases), and any dependencies between those use cases. The main purpose of a use case diagram is to show what system functions are performed for which actor. Roles of the actors in the system can be depicted.

Fig 6.2 Shows the Use case Diagram

3. SEQUENCE DIAGRAM:

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a Message Sequence Chart. Sequence diagrams are sometimes called event diagrams, event scenarios, and timing diagrams.

Fig 6.3 Shows the Sequence Diagram

7. RESULTS

7.1 Output Screens

Fig 7.1 Upload the Dataset In above screen click on 'Upload Smart Grid Dataset' button and upload dataset

Fig 7.2 Uploading the Dataset File

In above screen we are selecting and uploading 'Dataset.csv' file and then click on 'Open' button to load dataset and to get below screen

	on in the analytic to be				_
Upload Smart Grid Dataset] [E:/maam	j/March21/SmartGridAttack/Dataset/Dataset.csv		
Preprocess Data	Run Perceptron Algorith	hm	Run KNN Algorithm Run Support Vector Machine		
Run Logistic Regression	Detect Attack from Test	Data	All Algorithms Performance Graph		
nanoj/March21/SmartGridAttack/	Dataset/Dataset.csv loaded				
RI-PAI:VH RI-PMI:V RI-PA	2:VH RI-PM2:V smort_1	log2 sm	rt log3 snort log4 marker 0. Natural		
73.688102 130280.7109 -46.3007	19 130255.6377 0	0	0 Natural		
73.733939 130305.7842 -46.2548 74.083443 130581.5902 -45.8996	83 130280.7109 0 49 130556.5169 0	0	0 Natural 0 Natural		
74.553268 131083.0556 -45.4240	94 131057.9823 0	0	0 Natural		
69.282057 140535.6784 170.758	612 140510.6051 0	0	0 Attack		
-70.978012 137978.2048 169.063	657 137953.1315 0 437 135270.2917 0		0 Attack 0 Attack		
-75.481460 132186.2794 164.559	208 132161.2062 0	0	0 Attack		
-76.426840 131484.2279 163.613	1828 131459.1546 0	0	0 Attack		
rows x 129 columns]					
			Âc	tivate Windows	

Fig 7.3 Preprocess the dataset

In above screen dataset loaded and we can see above dataset showing non-numeric values and to replace them click on 'Preprocess Data' to replace with numeric values

Upload Smart Grid Dataset	E:/man	oj/March21/SmartGridAtt	ack/Dataset/Dataset.csv	
Preprocess Data	Run Perceptron Algorithm	Run KNN Algorithm	Run Support Vector Machine	
Run Logistic Regression	Detect Attack from Test Data	All Algorithms Perform	aance Graph	
erception Siscer : 36.9047(1904761) erception Accuracy : 58.40056603773 NN Precisia : 100.0 NN Real : 100.0 NN Fiscer : 100.0 NN Accuracy : 100.0 NN Accuracy : 100.0 NN Accuracy : 10.0 NN Accuracy : 58.40566037735846 outil: Reama: 150.0 NM Accuracy : 58.40566037735846) 55866 716481119077			
ogistic Regression Recall : 50.0 ogistic Regression FScore : 29.33333 ogistic Regression Accuracy : 41.509	333333334 433962264154			
				Activate Windows Go to Settings to actuate Window

Fig 7.4 Run the KNN Algorithm

In above screen I clicked on all 4 algorithms button and then we got accuracy, precision, recall and FSCORE of each algorithm and in all algorithm KNN is giving better performance result. Now we can upload test data and then ML algorithm will predict class label as normal or attack. In below test data we can see we have vector values but we don't have class label and this class label will be predicted by ML

Upload Smart Grid Dataset		E:/ma	noj/March21/SmartGrid.	Attack/Data	set/Dataset.csv		
Preprocess Data	Run Perc	/ Open				×	
Run Logistic Regression	Detect A	(imartGridAttack > Dataset	~ 0	Search Dataset	م • • • •	
7.	3	# Quick access	Name		Date modified	Type	
		Credbive This PC Desitep Desitep Documents Documents Videos Videos Local Disk (C) Local Disk (C	Q tenDeta.cov		01-64-2021 15:46	Mossel Erol C	

Fig 7.5 Upload the test.csv file

In above screen selecting and uploading 'testData.csv' file and then click on 'Open' button to get below result

Upload Smart Grid Dataset	E:/man	oj/March21/SmartGridAtta	ick/Dataset/Dataset.csv	
Preprocess Data	Run Perceptron Algorithm	Run KNN Algorithm	Run Support Vector Machine	
Run Logistic Regression	Detect Attack from Test Data	All Algorithms Perform	ance Graph	
1.3053210-0073-0073-0073-0073-0073-0073-0073-00	$\begin{array}{c} 558932-001 \\ 1885476-02 \\ 1.55933476-00 \\ 1.5933476-00 \\ 1.59331104-00 \\ 1.59331104-00 \\ 1.59331104-00 \\ 1.59331104-00 \\ 1.59331104-00 \\ 1.59331104-00 \\ 1.59331104-00 \\ 1.5933104-00 \\ 1.5933104-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59330-00 \\ 1.59300$			Arthute Window

Fig 7.6 Detection Accuracy

In above screen in square bracket we have grid vector values and after square bracket we can see predicted result as below screen and to see predicted result

In above graph x-axis represents algorithm name and yaxis represents accuracy, precision, recall and FSCORE for each algorithm and from above graph we can say KNN is giving better result

8. CONCLUSION

The attack detection problem has been reformulated as a machine learning problem and the performance of supervised, semisupervised, classifier and feature space fusion, and online learning algorithms have been analyzed for different attack scenarios. In a supervised binary classification problem, the attacked and secure measurements are labeled in two separate classes. In the experiments, we have observed that the state-of-the-art machine learning algorithms perform better than the wellknown attack detection algorithms that employ an SVE approach for the detection of both observable and unobservable attacks. We have observed that the perceptron is less sensitive and the k-NN is more sensitive to the system size than the other algorithms. In addition, the imbalanced data problem affects the performance of the k-NN. Therefore, k-NN may perform better in small-sized systems and worse in large-sized systems when compared to other algorithms.

9. REFERENCES

[1] C. Rudin et al., "Machine learning for the New York City power grid," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 2, pp. 328–345, Feb. 2012.

[2] R. N. Anderson, A. Boulanger, W. B. Powell, and W. Scott, "Adaptive stochastic control for the smart grid," Proc. IEEE, vol. 99, no. 6, pp. 1098–1115, Jun. 2011.

[3] Z. M. Fadlullah, M. M. Fouda, N. Kato, X. Shen, and Y. Nozaki, "An early warning system against malicious activities for smart grid communications," IEEE Netw., vol. 25, no. 5, pp. 50–55, Sep./Oct. 2011.

[4] Y. Zhang, L. Wang, W. Sun, R. C. Green, and M. Alam, "Distributed intrusion detection system in a multilayer network architecture of smart grids," IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 796–808, Dec. 2011.

[5] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor, "Sparse attack construction and state estimation in the smart grid: Centralized and distributed models," IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1306–1318, Jul. 2013. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. OZAY et al.: MACHINE LEARNING METHODS FOR ATTACK DETECTION IN THE SMART GRID 13

[6] A. Abur and A. G. Expósito, Power System State Estimation: Theory and Implementation. New York, NY, USA: Marcel Dekker, 2004.

[7] Y. Liu, P. Ning, and M. K. Reiter, "False data injection attacks against state estimation in electric power grids," in Proc. 16th ACM Conf. Comput. Commun. Secur., Chicago, IL, USA, Nov. 2009, pp. 21–32. [8] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, "Malicious data attacks on the smart grid," IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 645–658, Dec. 2011.

[9] E. Cotilla-Sanchez, P. D. H. Hines, C. Barrows, and S. Blumsack, "Comparing the topological and electrical structure of the North American electric power infrastructure," IEEE Syst. J., vol. 6, no. 4, pp. 616–626, Dec. 2012.

[10] T. T. Kim and H. V. Poor, "Strategic protection against data injection attacks on power grids," IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 326–333, Jun. 2011.

[11] E. J. Candès and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[12] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[13] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor, "Smarter security in the smart grid," in Proc. 3rd IEEE Int. Conf. Smart Grid Commun., Tainan, Taiwan, Nov. 2012, pp. 312–317. [14] L. Saitta, A. Giordana, and A. Cornuéjols, Phase Transitions in Machine Learning. New York, NY, USA: Cambridge Univ. Press, 2011.

[15] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor, "Distributed models for sparse attack construction and state vector estimation in the smart grid," in Proc. 3rd IEEE Int. Conf. Smart Grid Commun., Tainan, Taiwan, Nov. 2012, pp. 306–311.

[16] O. Bousquet, S. Boucheron, and G. Lugosi, "Introduction to statistical learning theory," in Advanced Lectures on Machine Learning, O. Bousquet, U. von Luxburg, and G. Rätsch, Eds. Berlin, Germany: Springer-Verlag, 2004.

[17] S. Kulkarni and G. Harman, An Elementary Introduction to Statistical Learning Theory. Hoboken, NJ, USA: Wiley, 2011.

[18] Q. Wang, S. R. Kulkarni, and S. Verdú, "Divergence estimation for multidimensional densities via k-nearest-neighbor distances," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2392–2405, May 2009.

[19] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Orlando, FL, USA: Academic, 2006.

[20] R. D. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York, NY, USA: Wiley, 2001.