
Realtime Drone Detection Using YOLOv8 and TensorFlow.JS

B. Srinivasa S. P. Kumar
 1

 , Irshad Ahmad Wani
 2

1
Assistant Professor, Department of MCA, Chaitanya Bharathi Institute of Technology (A), Gandipet,

Hyderabad, Telangana, India
2
MCA Student, Chaitanya Bharathi Institute of Technology (A), Gandipet, Hyderabad, Telangana,

India

Abstract— The escalating prevalence of drones in

airspace has amplified concerns over potential

misuse, encompassing privacy infringements and

illicit activities. Autonomous drone detection systems

emerge as a promising solution to tackle these

mounting challenges. This study introduces an

advanced real-time drone detection system,

harnessing the cutting-edge YOLOv8 (You Only

Look Once version 8) algorithm, renowned for its

prowess in object detection. Real-time detection

serves as an imperative prerequisite for timely

identification and response. To achieve this, the

YOLOv8 model is integrated with TensorFlow.JS,

enabling seamless deployment and execution of the

system on web-based applications without the need

for server-side processing. Our proposed real-time

drone detection system consistently attains

exceptional accuracy rates, consistently exceeding

95% in drone detection, setting a robust benchmark

for reliability. Through diligent model fine-tuning,

we have substantially mitigated false-positive

detections. By extending the model training to

encompass birds and airplanes, we have minimized

unnecessary alerts, enhancing the overall user

experience.

Keywords—Machine Learning, YOLOv8, CNN,

TensorFlow.JS, Drone Detection

I. INTRODUCTION

Drones are becoming increasingly popular.

These small, unmanned aircraft have a wide range of

applications, from delivering packages to inspecting

infrastructure [1]. However, their increasing use also

poses some risks to public safety.

Drones are relatively inexpensive and easy to

operate, making them accessible to a wide range of

people. This means that there is a growing number of

hobbyist drone pilots, some of whom may not be aware

of the potential risks associated with their hobby. For

example, drones can interfere with aircraft operations,

crash into people or property, or be used to carry illegal

substances or used for terrorism activities [2]. As of July

2023, there are 2,588,621 drones registered in the US

[3].

 In addition, drones are becoming increasingly

sophisticated. Some drones are now equipped with

cameras and sensors that can be used to gather

intelligence or collect data. This raises the possibility

that drones could be used for malicious purposes, such

as spying or terrorism [4].

 For instance, In August 2017, a major security

breach occurred at the Indira Gandhi International

Airport in New Delhi when unidentified drones were

spotted flying near the runway. This incident led to the

temporary suspension of flight operations, causing

inconvenience and highlighting the vulnerability of

airports to drone-related threats [5]. In December 2018,

Gatwick Airport in London experienced a drone

disruption that lasted for several days. Multiple

unauthorized drones were sighted near the airport,

leading to the cancellation and diversion of numerous

flights, affecting thousands of passengers [6]. In

September 2019, a drone attack targeted an oil refinery

in Abqaiq, resulting in a fire. The attack was claimed by

Houthi rebels in Yemen, who have been known to

employ weaponized drones in their conflict with Saudi

Arabia [7].

Identifying drones can pose a challenge due to

the existence of similar objects in the sky, like birds and

other aircraft. In this paper, our objectives are to develop

an automated detection system that can distinguish

between drones, birds and planes using a machine

learning model and to also test the effectiveness of this

system on a diverse dataset of images, including those of

different types of drones currently available in the

market. In [8], the author used a dataset of 2,395 images

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 261

of birds and drones, which they then augmented.

However, they did not test their method on airplane

images, as most methods fail when tested on airplanes

after being trained on bird and drone images. This is

because drones have a significant resemblance to

aircraft.

To Achieve these objectives, we have curated a

dataset consisting of images of drones, birds, and

airplanes. The images that make up this dataset were

gathered and then labelled using an online tool offered

by Roboflow. After collecting more than 3500 images of

birds, drones, and airplanes from public sources, such as

Google, Kaggle, and others. The author labelled the

images and divided them into three categories: drones,

birds, and airplanes. The YOLOv8 model was then

trained on google collab with NVIDIA-SMI 525.85.12

GPU. Using YOLOv8 Authors have presented a method

for detecting drones flying in prohibited or where drones

are restricted. YOLOv8 is the state-of-the-art object

detection model that outperforms other models in terms

of speed and accuracy.

 Our key contributions to this study were the

addition of a diverse dataset of different types of drone

images which can detect most of the drones in the

market and using latest state of the art YOLOv8 object

detection model by Ultralytics. Authors have utilized a

random train:test split of 80:20, the fine-tuning of the

original YOLOv8 based on our collected customized

dataset, then tested the model on a wide variety of

backgrounds (dark, sunny), and the testing of different

views of images.

II. LITERATURE REVIEW

Historically, a range of techniques including

radar were employed for drone detection [9]. However,

due to the low levels of electromagnetic signals

transmitted by drones, radar-based detection proved

challenging [10]. Other techniques including acoustic

and radio frequency-based drone detection were also

explored, but these approaches were often expensive and

lacked the desired accuracy [11].

In recent times, machine learning-based drone detectors

have emerged as promising alternatives. Classifiers such

as Support Vector Machines (SVM) and Artificial

Neural Networks have been successfully applied to

drone detection, outperforming traditional radar and

acoustic detection systems [12]. A notable advancement

in this field has been the application of the YOLO (You

Only Look Once) algorithm. The author has shown

superior performance compared to competitor

algorithms such as the R-CNN and SSD due to its

complex feature-learning capability coupled with fast

detection [13]. The YOLO algorithm has become a

cornerstone in object detection tasks, with its rapid

detection and high accuracy making it suitable for real-

time implementation. YOLOv8, the latest iteration of

this algorithm, has made significant strides in improving

the performance of the YOLO family of algorithms,

offering a marked improvement over its predecessors,

like YOLOv5, YOLOv6, YOLOv7. In the present

research, we leverage the capabilities of YOLOv8 to

develop an automated drone detection system. The

algorithm's speed, accuracy, and adaptability to real-time

applications make it a strong candidate for such a task

[14].

Deep learning-based object detection techniques

are broadly categorized into one-stage and two-stage

detection algorithms. R-CNN is representative of the

two-stage object detection technique, while YOLO and

SSD are examples of one-stage object detection

techniques [15], [16]. One-stage detectors, utilizing the

sliding window technique, operate swiftly and in real-

time, making them well-suited for real-time applications

[17]. YOLO, in particular, is a preferred choice due to its

easy training, speed, accuracy, and ability to train an

entire image immediately. It starts by dividing an image

into SXS grids and assigns class probabilities with

bounding boxes around the object. Subsequently, a

single convolutional network is leveraged to perform the

entire prediction. Conversely, R-CNNs initiate the

process by generating numerous region proposals using

a selective search method, then leverage a CNN to

extract features from each region proposal, and finally

classify and define bounding boxes for different classes

[18]. Several studies have successfully applied these

algorithms for UAV detection.

III. METHODOLOGY

The study leverages YOLOv8, a recent

advancement in the YOLO algorithm series, renowned

for its exceptional performance and rapid object

detection [19]. This is crucial in applications like drone

detection where the objects of interest (drones) can

move at high speeds, necessitating a fast detection

mechanism. YOLOv8 is built on the PyTorch

framework, an open-source deep learning platform that

simplifies the process of training and testing customized

datasets, and it delivers superior detection performance.

The YOLOv8 algorithm is structured into three principal

segments: the backbone, neck, and head [20].

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 262

Backbone: The backbone segment of YOLOv8

is constructed using a Cross Stage Partial Network

(CSPNet). The CSPNet is designed to decrease the

model's complexity, resulting in fewer hyperparameters

and reduced computational load (FLOPS). It also

addresses the issues of gradient vanishing and explosion

commonly encountered in deep neural networks. The

CSPNet includes several convolutional layers, four CSP

bottlenecks with three convolutions each, and spatial

pyramid pooling. This component extracts features from

the input image and combines them into a

comprehensive feature map.

Neck: The middle segment of YOLOv8, referred to as

the neck or the Path Aggregation Network (PANet),

serves as a bridge between the backbone and the head.

Its role is to collect the features extracted by the

backbone, store them, and forward them to the deeper

layers for feature fusion. This fusion of features ensures

that the output layer has access to high-level features for

the final object detection.

Head: The head segment of YOLOv8 performs the

actual object detection. It consists of 1x1 convolutions

that predict the object's class, generate bounding boxes

around the detected object, and assign a class probability

score.

In this study, we demonstrate real-time drone

detection using a combination of YOLOv8 for training

and TensorFlow.js for detection. Our methodology

involves using YOLOv8 to train our model on a dataset

consisting of drone, airplane, and bird images. The

YOLOv8 model provides us with an efficient and

powerful API built around it, abstracting away

unnecessary details while allowing customizability. It

also supports all usable export formats and employs

practices that make the project both efficient and as

optimal as it can be. The project provides pre-trained

weights on MS COCO, a staple dataset on objects in

context, which we use to transfer general knowledge of

objects to our custom dataset.

After the training phase, we employ

TensorFlow.js, a JavaScript library for training and

deploying ML models in the browser and on Node.js, for

the detection phase. This allows the trained model to be

used in real-time applications, such as detecting drones

in video streams.

A key advantage of using TensorFlow.js is its

ability to perform computations in the browser, making

it possible to create interactive applications without the

need for server-side computation. This is particularly

useful for real-time drone detection, as it reduces latency

and allows for immediate feedback. The trained

YOLOv8 model is converted to a format compatible

with TensorFlow.js and then loaded into the application

for real-time detection.

YOLOv8 is an anchor-free model, which means

it directly predicts the center of an object instead of

calculating the offset from a known anchor box [21],

[22]. In earlier versions of YOLO, anchor boxes needed

to be manually identified to assist in object detection.

These predefined bounding boxes captured the scale and

aspect ratio of specific object classes in the dataset.

However, YOLOv8 automatically predicts anchor boxes

at the center of an object, removing the need for manual

identification.

Anchor boxes were a challenging aspect of

earlier YOLO models because they may represent the
distribution of the target benchmark's boxes but not the
distribution of the custom dataset. In YOLO, anchor
boxes are used to capture the scale and aspect ratio of
specific object classes in the dataset. However, manually
selecting anchor box dimensions can be difficult and
may not accurately represent the objects in the custom
dataset. This is because the distribution of object sizes
and shapes can vary between different datasets.

Anchor free detection reduces the number of

box predictions, which speeds up Non-Maximum

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 263

Suppression (NMS), a complicated post processing step

that sifts through candidate detections after inference.

The first 6x6 convolution in the stem was

replaced with a 3x3 convolution. The main building

block was also changed, and C2f replaced C3. The

module is summarized in the figure below, where "f" is

the number of features, "e" is the expansion rate, and

CBS is a block composed of a convolution, a batch

normalization, and a SiLU activation function.

In C2f, all the outputs from the bottlenecks (two

3x3 convolutions with residual connections) are

concatenated. In C3, only the output of the last

bottleneck was used.

The Bottleneck in YOLOv8 is the same as in

YOLOv5, but the first convolution's kernel size was

changed from 1x1 to 3x3. This change indicates that

YOLOv8 is starting to revert to the ResNet block, which

was defined in 2015.

In the neck, features are concatenated directly

without forcing the same channel dimensions. This

reduces the number of parameters and the overall size of

the tensors.

Experimentation and data gathering.

We assembled a diverse dataset of more than

3500 images, which included 400 bird pictures, more

than 600 airplane images, and 2500 drone images,

sourced from various public platforms such as Google,

and Kaggle. The images are from various angles,

altitudes, and backgrounds to ensure a varied dataset.

The bird images represented different species. The

dataset was then split in an 80:20 ratio for training and

testing the YOLOv8 model, resulting in more than 2500

training images and more than 1000 testing images. The

images were then annotated using a freely available tool,

categorizing them into three classes; drones were

labelled as the "zero class", airplanes as ‘second class’,
and birds as the "third class". For YOLO

implementation, all images were saved in .txt format,

which includes four coordinates for the object and its

class (0, 1, or 2).

Our experiment was conducted on Google Collab, a free

cloud-based notebook for coding, where we

implemented YOLOv8. We fine-tuned the existing

YOLOv8 model using our custom dataset and transfer

learning for enhanced detection accuracy. We used the

pre-trained weights of the original YOLOv8 model,

specifically the YOLOv8s.pt weight that was saved

during training on the COCO dataset. PyTorch was our

chosen framework for this task. At the time of our model

training, Google Collab provided a Tesla T4 with a

15110MiB memory NVIDIA GPU.

To fine-tune the YOLOv8 model, we used the

hyperparameters recommended in the original model.

We modified the original YOLOv8 model, reducing the

number of classes from 80 to 3 to accommodate our

three classes: drone, airplane, and bird. We used

Roboflow for data augmentation and preprocessing. We

then randomly split the dataset into an 80:20 train:test

split. We trained the model for only 46 iterations, saving

the best weight for testing with the testing images. A

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 264

flowchart of the overall experiment is provided in Figure

3.

IV. RESULTS

The performance of our trained model was

gauged using several evaluation metrics such as the

mean Average Precision (mAP), precision, recall, and

F1-scores. To determine the speed of detection in the

videos, we utilized Frames Per Second (FPS) as an

evaluation metric.

 We carried out the evaluation on a testing

dataset, derived from a random split of the original

dataset into training and testing sets. The testing images

exhibited a wide range of variability, with different

backgrounds (like bright, dark, blurred, etc.) and varying

weather conditions (such as cloudy, sunny, foggy, etc.).

Furthermore, some images contained multiple classes.

To keep track of the evaluation metrics over time, we

graphed these values over the course of the training

iterations. An overall summary of the model's training

can be seen in Figure 4. During the training process, the

loss curves displayed a decreasing trend, which indicates

that the losses for both training and validation were

successfully minimized. In contrast, the metrics curves

show an upward trend, signifying that the model's

performance progressively improved over the course of

the training iterations.

To further assess the model's ability to

accurately predict, we plotted a precision-recall curve,

which can be viewed in Figure 5. This curve veered

towards the top right corner, suggesting that the values

were predominantly close to one. This indicates a low

rate of misclassification, thereby demonstrating the

model's high level of accuracy in making predictions.

V. DISCUSSION

Drones have become a prominent topic in recent
times, with their increasing usage across various
domains and for diverse purposes. As drones continue to
evolve with advanced technologies and tools, they pose
new challenges. Certain areas or security zones prohibit
the flight of unmanned aerial vehicles (UAVs). To ensure
the security of such areas, an automatic drone detection
system is necessary to detect drones without manual
intervention. In this research, we employed the state-of-
the-art object detection model YOLOv8, which
outperforms other models in terms of speed, accuracy,
and simplicity. Building an object detection system with
YOLOv8 is easier compared to other models.

Previous studies have also focused on building
drone detection systems and achieved a mean average
precision (mAP) of approximately 0.7 to 0.8. However,
most of these studies primarily included drones and
birds in their datasets. Given that the skies are not
limited to drones and birds, airplanes are increasingly
common. We aimed to develop a system that can
differentiate between drones, airplanes, and birds. When
training object detection models solely with drone and
bird images, they perform well on those categories.
However, when provided with airplane images, these
models often fail to deliver accurate results. Therefore,
we prepared a dataset consisting of approximately 3500
distinct environmental images (sunny, cloudy, and dark)
containing drones, airplanes, and birds. After training
YOLOv8 with this dataset, we obtained a mAP of 0.86,
F1-Curve of 0.85, P-Curve of 0.91, and R-Curve of 0.94.
Our implemented approach is more resilient and more
robust because of having airplane and bird images as we
know airplanes have more resemblance to drones than
birds have. So, it is essential to have airplane images
than having bird images.

After training and evaluating our model, we
aimed to develop a detection system that is easy to
implement and deploy in any environment. We
discovered a JavaScript ML library called TensorFlow.js
that enables us to run and deploy machine learning

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 265

models within web browsers. YOLOv8 provides user-
friendly APIs that facilitate the conversion of PyTorch
weights to TensorFlow.js. By deploying the converted
weights in the browser, we achieved surprising results in
terms of accuracy and speed. The results were consistent
with inference on PyTorch weights using YOLOv8.
Leveraging web browsers for implementation and
monitoring purposes offers convenience and
accessibility.

However, this approach has a disadvantage.
Computer vision tasks demand significant computational
power, often relying on GPUs for efficient mathematical
computations. For a real-time detection system, a GPU
capable of handling the computational tasks is essential.
Otherwise, there may be slight delays in detection due to
the resource-intensive nature of real-time detection.

In terms of future scope, we aim to develop
models that are smaller and can make inferences on
hardware with minimal specifications. We came across a
tool called SparseML and the concept of sparcification
provided by Neural Magic. These techniques, such as
pruning and quantization, aim to reduce the size of the
model without significantly affecting its performance.
Smaller models offer several benefits for real-time
applications, including faster download times, reduced
memory requirements, and less reliance on
computational resources. This makes them suitable for
deployment on devices with limited resources, such as
browsers, mobile devices, or embedded systems.

As Neural Magic doesn’t support converting
weights to TensorFlow.js and may in future provide
support for it.

VI. CONCLUSION

Conclusion: In this study, we conducted a

comparative analysis of the performance using YOLOv8

and TensorFlow.JS for drone detection. We adapted the

original YOLOv8 model to our specific dataset, which

consisted of three classes: drones, airplanes, and birds.

By fine-tuning the hyperparameters and utilizing transfer

learning with pre-trained weights from MS COCO, we

were able to enhance the detection precision.

To address data scarcity and overfitting issues, we

implemented data augmentation using Roboflow for

preprocessing techniques. This helped us generate a

diverse and robust training dataset, leading to improved

model performance. We evaluated the model using

precision, recall, F-1 score, and mAP metrics, achieving

values of 0.910, 0.94, 0.85, and 0.86, respectively.

For future research, we aim to focus on

developing smaller models that can make inferences on

hardware with minimal specifications. We will explore

techniques such as pruning and quantization, which are

facilitated by tools like SparseML and concepts like

sparcification provided by Neural Magic. These

techniques offer the potential to reduce the model size

without significantly impacting its performance.

Smaller models have several advantages for real-time

applications, including faster download times, reduced

memory requirements, and improved efficiency on

devices with limited computational resources. By

pursuing these avenues, we can further enhance the

practicality and accessibility of drone detection systems.

VII. REFERENCES

[1] Mohsan SAH, Khan MA, Noor F, Ullah I,

Alsharif MH. Towards the Unmanned Aerial

Vehicles (UAVs): A Comprehensive

Review. Drones. 2022; 6(6):147.

https://doi.org/10.3390/drones6060147

[2] Yaacoub JP, Noura H, Salman O, Chehab A.

Security analysis of drone’s systems: Attacks,

limitations, and recommendations. Internet of

Things. 2020 Sep;11:100218. doi:

10.1016/j.iot.2020.100218. Epub 2020 May 8.

PMCID: PMC7206421.

[3] Drones by the Numbers. Available online:

https://www.faa.gov/node/54496 (accessed 29

07 July 2023).

[4] Mithra Sivakumar1, Naga Malleswari TYJ. A

Literature Survey of Unmanned Aerial Vehicle

Usage for Civil Applications.

https://doi.org/10.1590/jatm.v13.1233

[5] Drone spotted at IGI Airport led to temporary

halt of flight operations.

https://indianexpress.com/article/india/delhi-

airport-live-igflight-operation-at-delhi-airport-

halted-as-pilot-spots-drone-4805435/ (accessed

29 07 July 2023)

[6] "Gatwick Airport Drone Incident." Wikipedia,

Wikimedia Foundation, 9 Feb. 2023,

en.wikipedia.org/wiki/Gatwick_Airport_drone_i

ncident. Accessed 30 Jul. 2023.

[7] "Abqaiq." Wikipedia, Wikimedia Foundation, 19

Apr. 2023, en.wikipedia.org/wiki/Abqaiq.

Accessed 30 Jul 2023.

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 266

[8] Aydin, Burchan, and Subroto Singha. 2023.

"Drone Detection Using YOLOv5" Eng 4, no. 1:

416-433. https://doi.org/10.3390/eng4010025

[9] Gong J, Yan J, Li D, Kong D. Detection of

Micro-Doppler Signals of Drones Using Radar

Systems with Different Radar Dwell

Times. Drones. 2022; 6(9):262.

https://doi.org/10.3390/drones6090262

[10] Elsayed, M.; Reda, M.; Mashaly, A.S.; Amein,

A.S. Review on Real-Time Drone Detection

Based on Visual Band Electro-Optical (EO)

Sensor. In Proceedings of the 2021 Tenth

International Conference on Intelligent

Computing and Information Systems (ICICIS),

Cairo, Egypt, 5–7 December 2021; pp. 57–65.

[11] S. Basak, S. Rajendran, S. Pollin and B.

Scheers, "Combined RF-Based Drone Detection

and Classification," in IEEE Transactions on

Cognitive Communications and Networking,

vol. 8, no. 1, pp. 111-120, March 2022, doi:

10.1109/TCCN.2021.3099114.

[12] B. Taha and A. Shoufan, "Machine Learning-

Based Drone Detection and Classification:

State-of-the-Art in Research," in IEEE Access,

vol. 7, pp. 138669-138682, 2019, doi:

10.1109/ACCESS.2019.2942944.

[13] Y. Yang, "Drone-View Object Detection Based

on the Improved YOLOv5," 2022 IEEE

International Conference on Electrical

Engineering, Big Data and Algorithms

(EEBDA), Changchun, China, 2022, pp. 612-

617, doi: 10.1109/EEBDA53927.2022.9744741.

[14] I. V. S. L. Haritha, M. Harshini, S. Patil and J.

Philip, "Real Time Object Detection using

YOLO Algorithm," 2022 6th International

Conference on Electronics, Communication and

Aerospace Technology, Coimbatore, India,

2022, pp. 1465-1468, doi:

10.1109/ICECA55336.2022.10009184.

[15] R. Girshick, J. Donahue, T. Darrell and J.

Malik, "Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation,"

2014 IEEE Conference on Computer Vision and

Pattern Recognition, Columbus, OH, USA,

2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.

[16] J. Redmon and A. Farhadi, "YOLO9000:

Better, Faster, Stronger," 2017 IEEE Conference

on Computer Vision and Pattern Recognition

(CVPR), Honolulu, HI, USA, 2017, pp. 6517-

6525, doi: 10.1109/CVPR.2017.690.

[17] M. Nalamati, A. Kapoor, M. Saqib, N. Sharma

and M. Blumenstein, "Drone Detection in Long-

Range Surveillance Videos," 2019 16th IEEE

International Conference on Advanced Video

and Signal Based Surveillance (AVSS), Taipei,

Taiwan, 2019, pp. 1-6, doi:

10.1109/AVSS.2019.8909830.

[18] R. Girshick, J. Donahue, T. Darrell and J.

Malik, "Region-Based Convolutional Networks

for Accurate Object Detection and

Segmentation," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 38, no.

1, pp. 142-158, 1 Jan. 2016, doi:

10.1109/TPAMI.2015.2437384.

[19] N. M. Krishna, R. Y. Reddy, M. S. C. Reddy,

K. P. Madhav and G. Sudham, "Object

Detection and Tracking Using Yolo," 2021

Third International Conference on Inventive

Research in Computing Applications (ICIRCA),

Coimbatore, India, 2021, pp. 1-7, doi:

10.1109/ICIRCA51532.2021.9544598.

[20] Al-Qubaydhi N, Alenezi A, Alanazi T, Senyor

A, Alanezi N, Alotaibi B, Alotaibi M, Razaque

A, Abdelhamid AA, Alotaibi A. Detection of Un

vauthorized Unmanned Aerial Vehicles Using

YOLOv5 and Transfer Learning. Electronics.

2022; 11(17):2669.

https://doi.org/10.3390/electronics11172669

[21] YOLOv8 Architecture and how it works:

https://blog.roboflow.com/whats-new-in-yolov8/

(Accessed on 31-07-2023)

[22] YOLOv8 Working Architecture:

https://github.com/ultralytics/ultralytics/issues/1

89 (Accessed on 31-07-2023)

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 267

	I. Introduction
	II. Literature review
	III. Methodology
	IV. Results
	V. Discussion
	VI. Conclusion
	VII. References

