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Abstract— The escalating prevalence of drones in 

airspace has amplified concerns over potential 

misuse, encompassing privacy infringements and 

illicit activities. Autonomous drone detection systems 

emerge as a promising solution to tackle these 

mounting challenges. This study introduces an 

advanced real-time drone detection system, 

harnessing the cutting-edge YOLOv8 (You Only 

Look Once version 8) algorithm, renowned for its 

prowess in object detection. Real-time detection 

serves as an imperative prerequisite for timely 

identification and response. To achieve this, the 

YOLOv8 model is integrated with TensorFlow.JS, 

enabling seamless deployment and execution of the 

system on web-based applications without the need 

for server-side processing. Our proposed real-time 

drone detection system consistently attains 

exceptional accuracy rates, consistently exceeding 

95% in drone detection, setting a robust benchmark 

for reliability. Through diligent model fine-tuning, 

we have substantially mitigated false-positive 

detections. By extending the model training to 

encompass birds and airplanes, we have minimized 

unnecessary alerts, enhancing the overall user 

experience.  

Keywords—Machine Learning, YOLOv8, CNN, 

TensorFlow.JS, Drone Detection 

 

I. INTRODUCTION 

Drones are becoming increasingly popular. 

These small, unmanned aircraft have a wide range of 

applications, from delivering packages to inspecting 

infrastructure [1]. However, their increasing use also 

poses some risks to public safety. 

Drones are relatively inexpensive and easy to 

operate, making them accessible to a wide range of 

people. This means that there is a growing number of 

hobbyist drone pilots, some of whom may not be aware 

of the potential risks associated with their hobby. For 

example, drones can interfere with aircraft operations, 

crash into people or property, or be used to carry illegal 

substances or used for terrorism activities [2]. As of July 

2023, there are 2,588,621 drones registered in the US 

[3]. 

 In addition, drones are becoming increasingly 

sophisticated. Some drones are now equipped with 

cameras and sensors that can be used to gather 

intelligence or collect data. This raises the possibility 

that drones could be used for malicious purposes, such 

as spying or terrorism [4]. 

 For instance, In August 2017, a major security 

breach occurred at the Indira Gandhi International 

Airport in New Delhi when unidentified drones were 

spotted flying near the runway. This incident led to the 

temporary suspension of flight operations, causing 

inconvenience and highlighting the vulnerability of 

airports to drone-related threats [5]. In December 2018, 

Gatwick Airport in London experienced a drone 

disruption that lasted for several days. Multiple 

unauthorized drones were sighted near the airport, 

leading to the cancellation and diversion of numerous 

flights, affecting thousands of passengers [6]. In 

September 2019, a drone attack targeted an oil refinery 

in Abqaiq, resulting in a fire. The attack was claimed by 

Houthi rebels in Yemen, who have been known to 

employ weaponized drones in their conflict with Saudi 

Arabia [7]. 

 

Identifying drones can pose a challenge due to 

the existence of similar objects in the sky, like birds and 

other aircraft. In this paper, our objectives are to develop 

an automated detection system that can distinguish 

between drones, birds and planes using a machine 

learning model and to also test the effectiveness of this 

system on a diverse dataset of images, including those of 

different types of drones currently available in the 

market. In [8], the author used a dataset of 2,395 images 
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of birds and drones, which they then augmented. 

However, they did not test their method on airplane 

images, as most methods fail when tested on airplanes 

after being trained on bird and drone images. This is 

because drones have a significant resemblance to 

aircraft. 

To Achieve these objectives, we have curated a 

dataset consisting of images of drones, birds, and 

airplanes. The images that make up this dataset were 

gathered and then labelled using an online tool offered 

by Roboflow. After collecting more than 3500 images of 

birds, drones, and airplanes from public sources, such as 

Google, Kaggle, and others. The author labelled the 

images and divided them into three categories: drones, 

birds, and airplanes. The YOLOv8 model was then 

trained on google collab with NVIDIA-SMI 525.85.12 

GPU. Using YOLOv8 Authors have presented a method 

for detecting drones flying in prohibited or where drones 

are restricted. YOLOv8 is the state-of-the-art object 

detection model that outperforms other models in terms 

of speed and accuracy. 

 Our key contributions to this study were the 

addition of a diverse dataset of different types of drone 

images which can detect most of the drones in the 

market and using latest state of the art YOLOv8 object 

detection model by Ultralytics. Authors have utilized a 

random train:test split of 80:20, the fine-tuning of the 

original YOLOv8 based on our collected customized 

dataset, then tested the model on a wide variety of 

backgrounds (dark, sunny), and the testing of different 

views of images. 

 

 

II. LITERATURE REVIEW 

Historically, a range of techniques including 

radar were employed for drone detection [9]. However, 

due to the low levels of electromagnetic signals 

transmitted by drones, radar-based detection proved 

challenging [10]. Other techniques including acoustic 

and radio frequency-based drone detection were also 

explored, but these approaches were often expensive and 

lacked the desired accuracy [11]. 

In recent times, machine learning-based drone detectors 

have emerged as promising alternatives. Classifiers such 

as Support Vector Machines (SVM) and Artificial 

Neural Networks have been successfully applied to 

drone detection, outperforming traditional radar and 

acoustic detection systems [12]. A notable advancement 

in this field has been the application of the YOLO (You 

Only Look Once) algorithm. The author has shown 

superior performance compared to competitor 

algorithms such as the R-CNN and SSD due to its 

complex feature-learning capability coupled with fast 

detection [13]. The YOLO algorithm has become a 

cornerstone in object detection tasks, with its rapid 

detection and high accuracy making it suitable for real-

time implementation. YOLOv8, the latest iteration of 

this algorithm, has made significant strides in improving 

the performance of the YOLO family of algorithms, 

offering a marked improvement over its predecessors, 

like YOLOv5, YOLOv6, YOLOv7. In the present 

research, we leverage the capabilities of YOLOv8 to 

develop an automated drone detection system. The 

algorithm's speed, accuracy, and adaptability to real-time 

applications make it a strong candidate for such a task 

[14]. 

Deep learning-based object detection techniques 

are broadly categorized into one-stage and two-stage 

detection algorithms. R-CNN is representative of the 

two-stage object detection technique, while YOLO and 

SSD are examples of one-stage object detection 

techniques [15], [16]. One-stage detectors, utilizing the 

sliding window technique, operate swiftly and in real-

time, making them well-suited for real-time applications 

[17]. YOLO, in particular, is a preferred choice due to its 

easy training, speed, accuracy, and ability to train an 

entire image immediately. It starts by dividing an image 

into SXS grids and assigns class probabilities with 

bounding boxes around the object. Subsequently, a 

single convolutional network is leveraged to perform the 

entire prediction. Conversely, R-CNNs initiate the 

process by generating numerous region proposals using 

a selective search method, then leverage a CNN to 

extract features from each region proposal, and finally 

classify and define bounding boxes for different classes 

[18]. Several studies have successfully applied these 

algorithms for UAV detection. 

 

III. METHODOLOGY 

The study leverages YOLOv8, a recent 

advancement in the YOLO algorithm series, renowned 

for its exceptional performance and rapid object 

detection [19]. This is crucial in applications like drone 

detection where the objects of interest (drones) can 

move at high speeds, necessitating a fast detection 

mechanism. YOLOv8 is built on the PyTorch 

framework, an open-source deep learning platform that 

simplifies the process of training and testing customized 

datasets, and it delivers superior detection performance. 

The YOLOv8 algorithm is structured into three principal 

segments: the backbone, neck, and head [20]. 
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Backbone: The backbone segment of YOLOv8 

is constructed using a Cross Stage Partial Network 

(CSPNet). The CSPNet is designed to decrease the 

model's complexity, resulting in fewer hyperparameters 

and reduced computational load (FLOPS). It also 

addresses the issues of gradient vanishing and explosion 

commonly encountered in deep neural networks. The 

CSPNet includes several convolutional layers, four CSP 

bottlenecks with three convolutions each, and spatial 

pyramid pooling. This component extracts features from 

the input image and combines them into a 

comprehensive feature map. 

Neck: The middle segment of YOLOv8, referred to as 

the neck or the Path Aggregation Network (PANet), 

serves as a bridge between the backbone and the head. 

Its role is to collect the features extracted by the 

backbone, store them, and forward them to the deeper 

layers for feature fusion. This fusion of features ensures 

that the output layer has access to high-level features for 

the final object detection. 

Head: The head segment of YOLOv8 performs the 

actual object detection. It consists of 1x1 convolutions 

that predict the object's class, generate bounding boxes 

around the detected object, and assign a class probability 

score.  

In this study, we demonstrate real-time drone 

detection using a combination of YOLOv8 for training 

and TensorFlow.js for detection. Our methodology 

involves using YOLOv8 to train our model on a dataset 

consisting of drone, airplane, and bird images. The 

YOLOv8 model provides us with an efficient and 

powerful API built around it, abstracting away 

unnecessary details while allowing customizability. It 

also supports all usable export formats and employs 

practices that make the project both efficient and as 

optimal as it can be. The project provides pre-trained 

weights on MS COCO, a staple dataset on objects in 

context, which we use to transfer general knowledge of 

objects to our custom dataset. 

 

After the training phase, we employ 

TensorFlow.js, a JavaScript library for training and 

deploying ML models in the browser and on Node.js, for 

the detection phase. This allows the trained model to be 

used in real-time applications, such as detecting drones 

in video streams. 

 

A key advantage of using TensorFlow.js is its 

ability to perform computations in the browser, making 

it possible to create interactive applications without the 

need for server-side computation. This is particularly 

useful for real-time drone detection, as it reduces latency 

and allows for immediate feedback. The trained 

YOLOv8 model is converted to a format compatible 

with TensorFlow.js and then loaded into the application 

for real-time detection. 

 

 

YOLOv8 is an anchor-free model, which means 

it directly predicts the center of an object instead of 

calculating the offset from a known anchor box [21], 

[22]. In earlier versions of YOLO, anchor boxes needed 

to be manually identified to assist in object detection. 

These predefined bounding boxes captured the scale and 

aspect ratio of specific object classes in the dataset. 

However, YOLOv8 automatically predicts anchor boxes 

at the center of an object, removing the need for manual 

identification.  

 
Anchor boxes were a challenging aspect of 

earlier YOLO models because they may represent the 
distribution of the target benchmark's boxes but not the 
distribution of the custom dataset. In YOLO, anchor 
boxes are used to capture the scale and aspect ratio of 
specific object classes in the dataset. However, manually 
selecting anchor box dimensions can be difficult and 
may not accurately represent the objects in the custom 
dataset. This is because the distribution of object sizes 
and shapes can vary between different datasets. 

 

Anchor free detection reduces the number of 

box predictions, which speeds up Non-Maximum 
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Suppression (NMS), a complicated post processing step 

that sifts through candidate detections after inference. 

 

 

The first 6x6 convolution in the stem was 

replaced with a 3x3 convolution. The main building 

block was also changed, and C2f replaced C3. The 

module is summarized in the figure below, where "f" is 

the number of features, "e" is the expansion rate, and 

CBS is a block composed of a convolution, a batch 

normalization, and a SiLU activation function. 

In C2f, all the outputs from the bottlenecks (two 

3x3 convolutions with residual connections) are 

concatenated. In C3, only the output of the last 

bottleneck was used. 

The Bottleneck in YOLOv8 is the same as in 

YOLOv5, but the first convolution's kernel size was 

changed from 1x1 to 3x3. This change indicates that 

YOLOv8 is starting to revert to the ResNet block, which 

was defined in 2015. 

In the neck, features are concatenated directly 

without forcing the same channel dimensions. This 

reduces the number of parameters and the overall size of 

the tensors. 

Experimentation and data gathering. 

We assembled a diverse dataset of more than 

3500 images, which included 400 bird pictures, more 

than 600 airplane images, and 2500 drone images, 

sourced from various public platforms such as Google, 

and Kaggle. The images are from various angles, 

altitudes, and backgrounds to ensure a varied dataset. 

The bird images represented different species. The 

dataset was then split in an 80:20 ratio for training and 

testing the YOLOv8 model, resulting in more than 2500 

training images and more than 1000 testing images. The 

images were then annotated using a freely available tool, 

categorizing them into three classes; drones were 

labelled as the "zero class", airplanes as ‘second class’, 
and birds as the "third class". For YOLO 

implementation, all images were saved in .txt format, 

which includes four coordinates for the object and its 

class (0, 1, or 2). 

Our experiment was conducted on Google Collab, a free 

cloud-based notebook for coding, where we 

implemented YOLOv8. We fine-tuned the existing 

YOLOv8 model using our custom dataset and transfer 

learning for enhanced detection accuracy. We used the 

pre-trained weights of the original YOLOv8 model, 

specifically the YOLOv8s.pt weight that was saved 

during training on the COCO dataset. PyTorch was our 

chosen framework for this task. At the time of our model 

training, Google Collab provided a Tesla T4 with a 

15110MiB memory NVIDIA GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To fine-tune the YOLOv8 model, we used the 

hyperparameters recommended in the original model. 

We modified the original YOLOv8 model, reducing the 

number of classes from 80 to 3 to accommodate our 

three classes: drone, airplane, and bird. We used 

Roboflow for data augmentation and preprocessing. We 

then randomly split the dataset into an 80:20 train:test 

split. We trained the model for only 46 iterations, saving 

the best weight for testing with the testing images. A 
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flowchart of the overall experiment is provided in Figure 

3. 

IV. RESULTS 

The performance of our trained model was 

gauged using several evaluation metrics such as the 

mean Average Precision (mAP), precision, recall, and 

F1-scores. To determine the speed of detection in the 

videos, we utilized Frames Per Second (FPS) as an 

evaluation metric.  

 We carried out the evaluation on a testing 

dataset, derived from a random split of the original 

dataset into training and testing sets. The testing images 

exhibited a wide range of variability, with different 

backgrounds (like bright, dark, blurred, etc.) and varying 

weather conditions (such as cloudy, sunny, foggy, etc.). 

Furthermore, some images contained multiple classes. 

To keep track of the evaluation metrics over time, we 

graphed these values over the course of the training 

iterations. An overall summary of the model's training 

can be seen in Figure 4. During the training process, the 

loss curves displayed a decreasing trend, which indicates 

that the losses for both training and validation were 

successfully minimized. In contrast, the metrics curves 

show an upward trend, signifying that the model's 

performance progressively improved over the course of 

the training iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

To further assess the model's ability to 

accurately predict, we plotted a precision-recall curve, 

which can be viewed in Figure 5. This curve veered 

towards the top right corner, suggesting that the values 

were predominantly close to one. This indicates a low 

rate of misclassification, thereby demonstrating the 

model's high level of accuracy in making predictions. 

 

V. DISCUSSION 

 

Drones have become a prominent topic in recent 
times, with their increasing usage across various 
domains and for diverse purposes. As drones continue to 
evolve with advanced technologies and tools, they pose 
new challenges. Certain areas or security zones prohibit 
the flight of unmanned aerial vehicles (UAVs). To ensure 
the security of such areas, an automatic drone detection 
system is necessary to detect drones without manual 
intervention. In this research, we employed the state-of-
the-art object detection model YOLOv8, which 
outperforms other models in terms of speed, accuracy, 
and simplicity. Building an object detection system with 
YOLOv8 is easier compared to other models. 
 

Previous studies have also focused on building 
drone detection systems and achieved a mean average 
precision (mAP) of approximately 0.7 to 0.8. However, 
most of these studies primarily included drones and 
birds in their datasets. Given that the skies are not 
limited to drones and birds, airplanes are increasingly 
common. We aimed to develop a system that can 
differentiate between drones, airplanes, and birds. When 
training object detection models solely with drone and 
bird images, they perform well on those categories. 
However, when provided with airplane images, these 
models often fail to deliver accurate results. Therefore, 
we prepared a dataset consisting of approximately 3500 
distinct environmental images (sunny, cloudy, and dark) 
containing drones, airplanes, and birds. After training 
YOLOv8 with this dataset, we obtained a mAP of 0.86, 
F1-Curve of 0.85, P-Curve of 0.91, and R-Curve of 0.94. 
Our implemented approach is more resilient and more 
robust because of having airplane and bird images as we 
know airplanes have more resemblance to drones than 
birds have. So, it is essential to have airplane images 
than having bird images. 
 

After training and evaluating our model, we 
aimed to develop a detection system that is easy to 
implement and deploy in any environment. We 
discovered a JavaScript ML library called TensorFlow.js 
that enables us to run and deploy machine learning 
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models within web browsers. YOLOv8 provides user-
friendly APIs that facilitate the conversion of PyTorch 
weights to TensorFlow.js. By deploying the converted 
weights in the browser, we achieved surprising results in 
terms of accuracy and speed. The results were consistent 
with inference on PyTorch weights using YOLOv8. 
Leveraging web browsers for implementation and 
monitoring purposes offers convenience and 
accessibility. 
 

However, this approach has a disadvantage. 
Computer vision tasks demand significant computational 
power, often relying on GPUs for efficient mathematical 
computations. For a real-time detection system, a GPU 
capable of handling the computational tasks is essential. 
Otherwise, there may be slight delays in detection due to 
the resource-intensive nature of real-time detection. 
 

In terms of future scope, we aim to develop 
models that are smaller and can make inferences on 
hardware with minimal specifications. We came across a 
tool called SparseML and the concept of sparcification 
provided by Neural Magic. These techniques, such as 
pruning and quantization, aim to reduce the size of the 
model without significantly affecting its performance. 
Smaller models offer several benefits for real-time 
applications, including faster download times, reduced 
memory requirements, and less reliance on 
computational resources. This makes them suitable for 
deployment on devices with limited resources, such as 
browsers, mobile devices, or embedded systems. 

As Neural Magic doesn’t support converting 
weights to TensorFlow.js and may in future provide 
support for it. 
 

 

VI. CONCLUSION 

Conclusion: In this study, we conducted a 

comparative analysis of the performance using YOLOv8 

and TensorFlow.JS for drone detection. We adapted the 

original YOLOv8 model to our specific dataset, which 

consisted of three classes: drones, airplanes, and birds. 

By fine-tuning the hyperparameters and utilizing transfer 

learning with pre-trained weights from MS COCO, we 

were able to enhance the detection precision. 

To address data scarcity and overfitting issues, we 

implemented data augmentation using Roboflow for 

preprocessing techniques. This helped us generate a 

diverse and robust training dataset, leading to improved 

model performance. We evaluated the model using 

precision, recall, F-1 score, and mAP metrics, achieving 

values of 0.910, 0.94, 0.85, and 0.86, respectively. 

For future research, we aim to focus on 

developing smaller models that can make inferences on 

hardware with minimal specifications. We will explore 

techniques such as pruning and quantization, which are 

facilitated by tools like SparseML and concepts like 

sparcification provided by Neural Magic. These 

techniques offer the potential to reduce the model size 

without significantly impacting its performance. 

Smaller models have several advantages for real-time 

applications, including faster download times, reduced 

memory requirements, and improved efficiency on 

devices with limited computational resources. By 

pursuing these avenues, we can further enhance the 

practicality and accessibility of drone detection systems. 
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