

Enhancing Web Application Firewalls with Proxy Grammar for SQL Injection Defense

SHAIK SAFIYA

PG Scholar, Student, Department of CSE, Srinivasa Institute Of Technology And Science

Kadapa,Andhra Pradesh

K CHANDRA PRASAD

Assistant Professor, Department of CSE, Srinivasa Institute Of Technology And Science

Kadapa,Andhra Pradesh

A RAVI SANKAR

Associate Professor & HOD, Department of CSE, Srinivasa Institute Of Technology And Science

Kadapa,Andhra Pradesh

 1 2 3

Abstract: Web applications are inherently vulnerable due to their open nature, making their security critical for

organizations of all sizes. These platforms often store sensitive data, and any exploitation of their vulnerabilities—especially

through SQL injection (SQLi) attacks—can lead to severe data breaches, financial loss, and reputational damage. SQLi

remains one of the most common and dangerous forms of attack used by malicious actors to compromise web application

security. Web Application Firewalls (WAFs) serve as a frontline defense against such threats. Although recent research has

introduced several advancements in WAF technologies to prevent SQLi, many solutions fall short by only evaluating WAF

effectiveness without providing mechanisms to patch identified vulnerabilities. Others offer patches limited to the specific

syntax supported by the tested WAF. To address these limitations, this paper presents PROGESI (PROxy Grammar to

Enhance SQL Injection prevention)—a novel framework designed to reinforce WAF capabilities. PROGESI functions as an

intermediary layer between a web server and incoming application-level requests. It can be deployed either independently or

alongside existing WAFs and applies a set of grammar-based rules to dynamically patch SQLi vulnerabilities identified in

the target server. Notably, PROGESI also detects and mitigates SQLi attempts that involve mutation techniques, thanks to

its generalized rule-based approach. Experimental results demonstrate two key strengths of PROGESI: (i) enhanced

detection of SQLi attacks—even in the presence of existing server-side defenses—with effectiveness improving as rule

generalization increases; and (ii) superior detection accuracy, outperforming state-of-the-art methods even at lower levels of

generalization, as validated on a benchmark SQLi dataset.

Keywords: Ethereum, phishing scams, blockchain security, phishing gang detection, transaction analysis,

I. INTRODUCTION

Web applications have been integral to business

operations for over two decades, serving as the interface for

various enterprise functions. Most of these applications are

backed by databases, which remain the predominant storage

solution in organizational environments. However, their

integration with web applications also introduces significant

security risks, primarily due to exploitable vulnerabilities

that can compromise sensitive data. One of the most

persistent and severe threats is the SQL injection (SQLi)

attack, which continues to grow in both frequency and

impact [2], [14],. Common defenses against SQLi include

input validation functions, web application firewalls

(WAFs), and the use of prepared statements. Validation and

WAFs aim to sanitize user input at the application level,

while prepared statements bind user inputs to predefined

query structures. Despite these measures, less common

techniques have emerged, such as query behavior

monitoring, which block anomalous SQL queries based on

model deviations. However, these methods often operate

without full awareness of how queries are interpreted by the

underlying database management system (DBMS) [5], [6],

[17].

A major challenge lies in the oversimplified or incorrect

assumptions developers make about the interaction between

server-side code and the DBMS. For instance, developers

often assume that PHP’s mysql_real_escape_string is

sufficient to neutralize all potential SQLi payloads, which is

not the case. Another common oversight is neglecting to

revalidate data retrieved from the database before

incorporating it into new queries, resulting in second-order

injection vulnerabilities. For example, input like admin’ --

may initially be sanitized, but if the DBMS stores and later

retrieves it without adequate checks, the payload can still

trigger an injection when reused. These vulnerabilities stem

from a semantic mismatch between a developer’s expectation

of how SQL queries are processed and the DBMS’s actual

behavior. This mismatch weakens existing security

mechanisms, potentially allowing SQLi attacks to succeed

despite implemented defenses.

To mitigate this issue, a shift in defense strategy is

proposed—moving the protection mechanisms inside the

DBMS itself. By doing so, SQLi detection occurs after inputs

are processed by server-side code and just before execution

by the DBMS, reducing reliance on potentially flawed

assumptions. This approach is inspired by similar in-process

security strategies successfully applied in binary application

protection, such as address space layout randomization

Journal of Engineering Sciences Vol 16 Issue 04,2025

ISSN:0377-9254 jespublication.com Page 1039

(ASLR), data execution prevention (DEP), and stack

canaries [18], [21].

In this paper, we propose SEPTIC (SElf-ProtecTIng

Databases from attaCks), a novel framework that embeds

runtime protection directly within the DBMS. The DBMS is

uniquely positioned to detect such attacks, given its

definitive knowledge of SQL semantics, including clauses,

predicates, and expressions—insight that external

mechanisms lack.

SEPTIC addresses two primary classes of attacks:

traditional SQLi and stored injection attacks, including

stored cross-site scripting (XSS), both of which involve

SQL queries. For SQLi, SEPTIC detects malicious queries

by comparing them against a set of previously validated

query models and using similarity-based matching to

improve detection accuracy. For stored injections, it uses

specialized plugins that sanitize or reject harmful data

before it is committed to the database.

II. LITERATURE SURVEY

Web application attacks have been addressed through various

mitigation strategies in the literature, which can be broadly

classified based on the application layer they target. These

include: (i) security by design approaches, which aim to

prevent vulnerabilities from the initial stages of application

development; (ii) machine learning models that predict and

detect web-based attacks; and (iii) Web Application Firewalls

(WAFs) that safeguard web servers from malicious HTTP

traffic. This section focuses on security by design techniques,

followed by a discussion of the motivation behind the

proposed contribution.

Security by design represents a proactive defense mechanism

in web development. These approaches aim to eliminate or

reduce vulnerabilities—such as SQL injection (SQLi)—
during the design and coding phases. One widely used method

involves input sanitization, which restricts input to a

predefined acceptable domain. If user input falls outside this

domain, the application halts execution, effectively mitigating

potential threats. Developers typically define rules for

acceptable inputs rather than attempting to account for every

possible malicious input .

In [14], a MySQL plugin named SQLBlock was proposed to

protect popular PHP-based web applications from SQLi

attacks. Another widely adopted secure design framework is

Laravel [15], [16], which defends against SQLi by using bind

variables—values passed to SQL queries through

parameterized statements rather than as raw literals. This is

implemented via Laravel’s Eloquent ORM [17], which

abstracts SQL interactions and encourages secure database

access practices.

However, design-level protections should not be tied to

specific programming languages. For instance, Java’s

prepared statement interfaces represent a language-dependent

solution. To address this limitation, the authors in [18] explored

language-independent secure design patterns, such as the

strategy design pattern, where algorithms are selected

dynamically to mitigate SQLi threats. Similarly, [19] extended

the factory design pattern, implementing a secure function that

leverages the libinjection library to detect and respond to SQLi

attacks effectively.

Another alternative is the use of stored procedures [15], which

encapsulate SQL logic within predefined subroutines. This

adds an abstraction layer between user input and database

execution, enhancing security by limiting direct SQL

interactions.

In [15], an ad hoc design pattern is proposed specifically for

lateral-based SQLi attacks. This pattern introduces an

architectural model comprising three key zones: the injection

zone, where user inputs are handled; the secure zone, which

triggers the appropriate security mechanisms; and the sensitive

zone, which protects critical data. This decoupling of user

interaction and security logic enhances modularity while

maintaining strong protection.

In summary, security by design remains a foundational

approach for preventing SQLi and other injection-based

attacks. By incorporating robust input validation, secure

programming patterns, and architectural abstractions early in

development, applications can significantly reduce their

exposure to vulnerabilities..

3. METHODOLOGY
The proposed methodology introduces a layered defense

framework designed to enhance SQL injection (SQLi)

prevention in web applications by integrating a proxy

grammar-based system, PROGESI, with existing Web

Application Firewalls (WAFs). This framework operates as

an intermediary layer between the client and the web server,

intercepting and analyzing incoming HTTP requests. First,

the system extracts and parses SQL queries from the requests

using a domain-specific proxy grammar that models

legitimate query patterns. A rule-based engine, enriched with

generalization mechanisms, is then applied to detect

deviations that signify SQLi attempts, including obfuscated or

mutated attacks. The framework supports two operational

modes: standalone—where PROGESI functions

independently—and integrated—where it augments the

capabilities of traditional WAFs. Furthermore, when an attack

pattern is detected that bypasses existing WAF rules,

PROGESI automatically generates patch rules that are

specific to the affected server context. These patches are

reusable and not bound to any programming language or SQL

dialect, promoting broad applicability. To ensure adaptability,

the framework supports rule aging and quarantine

mechanisms to update detection logic dynamically in

response to application updates or new attack vectors. This

methodology emphasizes minimal false positives, strong

generalization, and seamless deployment without altering the

Journal of Engineering Sciences Vol 16 Issue 04,2025

ISSN:0377-9254 jespublication.com Page 1040

original application codebase.

IV. PROPOSED SYSTEM

With respect to security by design strategies,

although Laravel includes features to protect against these

SQL injection vulnerabilities (such as wrapping column

names), some DB engines may still be vulnerable because

they do not support binding variables (depending on their

versions and configurations). Regarding the input

sanitizers, this mitigation strategy is not applicable in every

case because it could lead to the need for a complete

rewrite of the source code software, which in some cases is

not a cheap solution. In addition, inhibited characters may

be present in some strings. Finally, the introduction of

sophisticated input sanitizer methods could result in a

degradation in web application performance. Although the

efficiency of ML-based detection algorithms proves to be

the most widespread and popular, the emerging

cybersecurity frontiers of AI systems make these systems

susceptible to adversarial attacks that can evade them..

V.RESULTS

The screenshots of various phases of project are as follows

Screen 1:Home Page

Screen 2: Web Server Menu Page

Screen 3 : Signature Generator

Screen 4: Signature Comparator

Journal of Engineering Sciences Vol 16 Issue 04,2025

ISSN:0377-9254 jespublication.com Page 1041

Screen 5: Rank Chart

Screen 6: Sql Injection

VI.CONCLUSION

Successful SQL injection (SQLi) attacks pose a serious

threat to the confidentiality, integrity, and availability of

data, making their detection and prevention a critical

concern in the domain of web application security.

Addressing this challenge, the paper introduced PROGESI,

a grammar-based proxy framework designed to detect and

mitigate SQLi attacks. PROGESI can operate

independently or complement existing next-generation

firewall (NGFW) solutions without degrading

performance, particularly in terms of false positive rates.

Experimental evaluations demonstrated the effectiveness of

PROGESI, even in environments where security by design

principles were already applied, by uncovering and

patching complex SQLi vulnerabilities that might

otherwise evade detection. Additionally, PROGESI

maintained high sensitivity levels, despite not utilizing the

maximum possible rate of mutation techniques. As part of

future research, further exploration will focus on

optimizing the generalization parameter, which governs

detection breadth and rule accuracy. Selective filtering of

low-impact mutations prior to processing may further reduce

the execution time required for patch rule generation,

enhancing the framework’s efficiency and scalability.

REFERENCES

[1] C. Rohith and R. S. Batth, ‘‘Cyber warfare: Nations

cyber conflicts, cyber coldwar between nations and its

repercussion,’’ in Proc. Int. Conf. Comput. Intell. Knowl.

Economy (ICCIKE), Dec. 2019, pp. 640–645.

[2] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj,

‘‘From ChatGPT to ThreatGPT: Impact of generative AI in

cybersecurity and privacy,’’ IEEE Access, vol. 11, pp.

80218–80245, 2023.

[3] K. Neupane, R. Haddad, and L. Chen, ‘‘Next generation

firewall for network security: A survey,’’ in Proc.

SoutheastCon, Apr. 2018, pp. 1–6.

[4] J. Liang and Y. Kim, ‘‘Evolution of firewalls: Toward

securer network using next generation firewall,’’ in Proc.

IEEE 12th Annu. Comput. Commun. Workshop Conf.

(CCWC), Jan. 2022, pp. 0752–0759.

[5] M. T. Arefin, M. R. Uddin, N. A. Evan, and M. R. Alam,

‘‘Enterprise network: Security enhancement and policy

management using next-generation firewall (NGFW),’’ in

Computer Networks, Big Data and IoT. Springer, 1007, pp.

753–769. [Online]. Available:

https://link.springer.com/book/10.1007/978-981- 16-0965-

7?source=shoppingads&locale=en-it&gad_source=1&gclid=

 [6] C. Togay, A. Kasif, C. Catal, and B. Tekinerdogan, ‘‘A

firewall policy anomaly detection framework for reliable

network security,’’ IEEE Trans. Rel., vol. 71, no. 1, pp.

339–347, Mar. 2022.

[7] D. Bringhenti, L. Seno, and F. Valenza, ‘‘An optimized

approach for assisted firewall anomaly resolution,’’ IEEE

Access, vol. 11, pp. 119693–119710, 2023.

[8] E.-S.-M. El-Alfy, ‘‘A heuristic approach for firewall

policy optimization,’’ in Proc. 9th Int. Conf. Adv. Commun.

Technol., Feb. 2007, pp. 236–248. [Online]. Available:

https://ceur-ws.org/Vol-3260/paper17.pdf

[9] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and G.

Pirlo, ‘‘An innovative two-stage algorithm to optimize

firewall rule ordering,’’ Comput. Secur., vol. 134, Nov.

2023, Art. no. 103423.

[10] L. Schiff and S. Schmid, ‘‘PRI: Privacy preserving

inspection of encrypted network traffic,’’ in Proc. IEEE

Secur. Privacy Workshops (SPW), May 2016, pp. 296–303.

[11] M. Zain ul Abideen, S. Saleem, and M. Ejaz, ‘‘VPN

traffic detection in SSL-protected channel,’’ Secur.

Commun. Netw., vol. 2019, pp. 1–17, Oct. 2019.

[12] J. Heino, A. Hakkala, and S. Virtanen, ‘‘Study of

methods for endpoint aware inspection in a next generation

firewall,’’ Cybersecurity, vol. 5, no. 1, p. 25, Sep. 2022.

[13] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and

G. Pirlo, ‘‘YAMME: A YAra-byte-signatures metamorphic

mutation engine,’’ IEEE Trans. Inf. Forensics Security, vol.

18, pp. 4530–4545, 2023.

[14] H. ElSawy, M. A. Kishk, and M.-S. Alouini, ‘‘Spatial

firewalls: Quarantining malware epidemics in large-scale

massive wireless networks,’’ IEEE Commun. Mag., vol. 58,

no. 9, pp. 32–38, Sep. 2020.

Journal of Engineering Sciences Vol 16 Issue 04,2025

ISSN:0377-9254 jespublication.com Page 1042

https://link.springer.com/book/10.1007/978-981-

[15] A. Rahali and M. A. Akhloufi, ‘‘MalBERTv2: Code

aware BERT-based model for malware identification,’’ Big

Data Cognit. Comput., vol. 7, no. 2, p. 60, Mar. 2023.

[16] P. L. S. Jayalaxmi, R. Saha, G. Kumar, M. Conti, and

T.-H. Kim, ‘‘Machine and deep learning solutions for

intrusion detection and prevention in IoTs: A survey,’’
IEEE Access, vol. 10, pp. 121173–121192, 2022.

[17] L. Ashiku and C. Dagli, ‘‘Network intrusion detection

system using deep learning,’’ Proc. Comput. Sci., vol. 185,

pp. 239–247, Jan. 2021.

[18] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and

G. Pirlo, ‘‘Automatic decision tree-based NIDPS ruleset

generation for DoS/DDoS attacks,’’ J. Inf. Secur. Appl.,

vol. 82, May 2024, Art. no. 103736.

[19] M. S. Islam, M. A. Uddin, D. M. S. Ahmed, and G.

Moazzam, ‘‘Analysis and evaluation of network and

application security based on next generation firewall,’’
Int. J. Comput. Digit. Syst., vol. 13, no. 1, pp. 193–202,

Jan. 2023.

[20] A. Marchand-Melsom and D. B. N. Mai, ‘‘Automatic

repair of OWASP top 10 security vulnerabilities: A

survey,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng.

Workshops, Jun. 2020, pp. 23–30.

[21] S. Alazmi and D. C. De Leon, ‘‘A systematic

literature review on the characteristics and effectiveness of

web application vulnerability scanners,’’ IEEE Access, vol.

10, pp. 33200–33219, 2022.

[22] F. Faisal Fadlalla and H. T. Elshoush, ‘‘Input

validation vulnerabilities in web applications: Systematic

review, classification, and analysis of the current state-of-

the-art,’’ IEEE Access, vol. 11, pp. 40128–40161, 2023.

[23] H. Gupta, S. Mondal, S. Ray, B. Giri, R. Majumdar,

and V. P. Mishra, ‘‘Impact of SQL injection in database

security,’’ in Proc. Int. Conf. Comput. Intell. Knowl.

Economy (ICCIKE), Dec. 2019, pp. 296–299.

[24] M. Silva, S. Ribeiro, V. Carvalho, F. Cardoso, and R.

L. Gomes, ‘‘Scalable detection of SQL injection in cyber

physical systems,’’ in Proc. 12th Latin-Amer. Symp.

Dependable Secure Comput., Oct. 2023, pp. 220–225.

[25] A. Razaque, F. Amsaad, M. J. Khan, S. Hariri, S.

Chen, C. Siting, and X. Ji, ‘‘Survey: Cybersecurity

vulnerabilities, attacks and solutions in the medical

domain,’’ IEEE Access, vol. 7, pp. 168774–168797, 2019.

Journal of Engineering Sciences Vol 16 Issue 04,2025

ISSN:0377-9254 jespublication.com Page 1043

	I. INTRODUCTION
	The proposed methodology introduces a layered defense framework designed to enhance SQL injection (SQLi) prevention in web applications by integrating a proxy grammar-based system, PROGESI, with existing Web Application Firewalls (WAFs). This framewor...
	

	IV. PROPOSED SYSTEM
	With respect to security by design strategies, although Laravel includes features to protect against these SQL injection vulnerabilities (such as wrapping column names), some DB engines may still be vulnerable because they do not support binding varia...
	V.RESULTS
	The screenshots of various phases of project are as follows
	Screen 1:Home Page
	Screen 2: Web Server Menu Page
	Screen 3 : Signature Generator
	Screen 4: Signature Comparator
	Screen 5: Rank Chart
	Screen 6: Sql Injection
	VI.CONCLUSION
	Successful SQL injection (SQLi) attacks pose a serious threat to the confidentiality, integrity, and availability of data, making their detection and prevention a critical concern in the domain of web application security. Addressing this challenge, t...
	REFERENCES
	[1] C. Rohith and R. S. Batth, ‘‘Cyber warfare: Nations cyber conflicts, cyber coldwar between nations and its repercussion,’’ in Proc. Int. Conf. Comput. Intell. Knowl. Economy (ICCIKE), Dec. 2019, pp. 640–645.
	[2] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, ‘‘From ChatGPT to ThreatGPT: Impact of generative AI in cybersecurity and privacy,’’ IEEE Access, vol. 11, pp. 80218–80245, 2023.
	[3] K. Neupane, R. Haddad, and L. Chen, ‘‘Next generation firewall for network security: A survey,’’ in Proc. SoutheastCon, Apr. 2018, pp. 1–6.
	[4] J. Liang and Y. Kim, ‘‘Evolution of firewalls: Toward securer network using next generation firewall,’’ in Proc. IEEE 12th Annu. Comput. Commun. Workshop Conf. (CCWC), Jan. 2022, pp. 0752–0759.
	[5] M. T. Arefin, M. R. Uddin, N. A. Evan, and M. R. Alam,
	‘‘Enterprise network: Security enhancement and policy management using next-generation firewall (NGFW),’’ in Computer Networks, Big Data and IoT. Springer, 1007, pp. 753–769. [Online]. Available: https://link.springer.com/book/10.1007/978-981- 16-0965...
	[6] C. Togay, A. Kasif, C. Catal, and B. Tekinerdogan, ‘‘A firewall policy anomaly detection framework for reliable network security,’’ IEEE Trans. Rel., vol. 71, no. 1, pp. 339–347, Mar. 2022.
	[7] D. Bringhenti, L. Seno, and F. Valenza, ‘‘An optimized approach for assisted firewall anomaly resolution,’’ IEEE Access, vol. 11, pp. 119693–119710, 2023.
	[8] E.-S.-M. El-Alfy, ‘‘A heuristic approach for firewall policy optimization,’’ in Proc. 9th Int. Conf. Adv. Commun. Technol., Feb. 2007, pp. 236–248. [Online]. Available: https://ceur-ws.org/Vol-3260/paper17.pdf
	[9] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and G. Pirlo, ‘‘An innovative two-stage algorithm to optimize firewall rule ordering,’’ Comput. Secur., vol. 134, Nov. 2023, Art. no. 103423.
	[10] L. Schiff and S. Schmid, ‘‘PRI: Privacy preserving inspection of encrypted network traffic,’’ in Proc. IEEE Secur. Privacy Workshops (SPW), May 2016, pp. 296–303.
	[11] M. Zain ul Abideen, S. Saleem, and M. Ejaz, ‘‘VPN traffic detection in SSL-protected channel,’’ Secur. Commun. Netw., vol. 2019, pp. 1–17, Oct. 2019.
	[12] J. Heino, A. Hakkala, and S. Virtanen, ‘‘Study of methods for endpoint aware inspection in a next generation firewall,’’ Cybersecurity, vol. 5, no. 1, p. 25, Sep. 2022.
	[13] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and G. Pirlo, ‘‘YAMME: A YAra-byte-signatures metamorphic mutation engine,’’ IEEE Trans. Inf. Forensics Security, vol. 18, pp. 4530–4545, 2023.
	[14] H. ElSawy, M. A. Kishk, and M.-S. Alouini, ‘‘Spatial firewalls: Quarantining malware epidemics in large-scale massive wireless networks,’’ IEEE Commun. Mag., vol. 58, no. 9, pp. 32–38, Sep. 2020.
	[15] A. Rahali and M. A. Akhloufi, ‘‘MalBERTv2: Code aware BERT-based model for malware identification,’’ Big Data Cognit. Comput., vol. 7, no. 2, p. 60, Mar. 2023.
	[16] P. L. S. Jayalaxmi, R. Saha, G. Kumar, M. Conti, and T.-H. Kim, ‘‘Machine and deep learning solutions for intrusion detection and prevention in IoTs: A survey,’’ IEEE Access, vol. 10, pp. 121173–121192, 2022.
	[17] L. Ashiku and C. Dagli, ‘‘Network intrusion detection system using deep learning,’’ Proc. Comput. Sci., vol. 185, pp. 239–247, Jan. 2021.
	[18] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and G. Pirlo, ‘‘Automatic decision tree-based NIDPS ruleset generation for DoS/DDoS attacks,’’ J. Inf. Secur. Appl., vol. 82, May 2024, Art. no. 103736.
	[19] M. S. Islam, M. A. Uddin, D. M. S. Ahmed, and G. Moazzam, ‘‘Analysis and evaluation of network and application security based on next generation firewall,’’ Int. J. Comput. Digit. Syst., vol. 13, no. 1, pp. 193–202, Jan. 2023.
	[20] A. Marchand-Melsom and D. B. N. Mai, ‘‘Automatic repair of OWASP top 10 security vulnerabilities: A survey,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. Workshops, Jun. 2020, pp. 23–30.
	[21] S. Alazmi and D. C. De Leon, ‘‘A systematic literature review on the characteristics and effectiveness of web application vulnerability scanners,’’ IEEE Access, vol. 10, pp. 33200–33219, 2022.
	[22] F. Faisal Fadlalla and H. T. Elshoush, ‘‘Input validation vulnerabilities in web applications: Systematic review, classification, and analysis of the current state-of-the-art,’’ IEEE Access, vol. 11, pp. 40128–40161, 2023.
	[23] H. Gupta, S. Mondal, S. Ray, B. Giri, R. Majumdar, and V. P. Mishra, ‘‘Impact of SQL injection in database security,’’ in Proc. Int. Conf. Comput. Intell. Knowl. Economy (ICCIKE), Dec. 2019, pp. 296–299.
	[24] M. Silva, S. Ribeiro, V. Carvalho, F. Cardoso, and R. L. Gomes, ‘‘Scalable detection of SQL injection in cyber physical systems,’’ in Proc. 12th Latin-Amer. Symp. Dependable Secure Comput., Oct. 2023, pp. 220–225.
	[25] A. Razaque, F. Amsaad, M. J. Khan, S. Hariri, S. Chen, C. Siting, and X. Ji, ‘‘Survey: Cybersecurity vulnerabilities, attacks and solutions in the medical domain,’’ IEEE Access, vol. 7, pp. 168774–168797, 2019.

