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ABSTRACT: 
Major industries throught the world are being 

transformed by the artificial intelligence (AI) 

revolution. Many engineers and scientists are 

interested in AI because it makes correct inferences. 

After careful consideration, it appears that hardware- in- 

the-loop (HIL) emulation may choose to use this 

kind of modeling approach as one of the choices. In this 

article, a method for simulating power electronic motor 

drive transients for advanced transportation 

applications (ATAs) without a conventional circuit- 

oriented transient solver is proposed. To verify the real- 

time emulaapplication-specific labs, the more electric 

aircraft (MEA) power system is used as a case study. 

MLBs have used neural networks (NNs) to create 

component-, device-, and system-level models for 

diverse pieces of machinery. These models  have 

been successfully trained in a cluster and are now 

being used with field-programmable gates. 

Based hardware platform (FPGA). The results of the 

MLBB emulation are then contrasted with those 

obtained by PSCAD/EMTDC for the system level 

and SaberRD for the device level. The results of the 

comparison revealed great consistency for 

modelcorrectness and high speed-up forhardware 

execution. 

 

1. INTRODUCTION 

Increasing adoption of a renovated power 

electronic drive system has been witnessed in the 

advanced transportation application (ATA) of more 

electric aircraft (MEA) all-electric ships 

(AES)traction, etc. The reason behind these ATAs 

is highly related to  their  lower-cost ownership 

and substantially increased system reliability. 

Innovative power electronics are the fundamental 

enabling technology in the reduction of physical weight 

and fuel utilization in ATAs. Consequently, it is crucial 

to create hardware-in- the-loop (HIL) 

 

The biggest challenge of the current HIL 

emulation technique is the limitation of the 

computation power based on the traditional 

electromagnetic transient (EMT) algorithms. To be 

more specific, the increasingly integrated power 

electronic system introduces excessive system 

nodes into the circuit network, which results in 

heavy execution delays for getting the final solution. 

Recently, the development of artificial 

intelligence (AI) and its application- specific 

integrated circuit (ASIC) [6] give a new possibility to 

represent the next-generation circuit solver. These 

newly developed AI  neural network (NN) 

models are forecasting methods based  on 

nonlinear mathematical equivalent, which has 

been applied in the areas of face verification [8], 

image resolution processing [7], human action 

recognition [9], and natural language processing[10]– 

[12]. The ideally suited hardware for the NN’s 

inherent 

 

 

 

systems in difficult conditions. The primary 

difficulty with the existing HIL emulation 

method is the limited computing capacity 

provided by the old-school electromagnetic 

transient (EMT) techniques. To be more precise, 

when power electronic systems get more 

integrated, they add an excessive number of 

system nodes to the circuit  network,  which 

causes a significant execution delay in reaching 

the answer. A fresh opportunity to depict  the 

next- generation circuit solver has recently arisen with 

the development of artificial intelligence (AI) and 

its application- specific  integrated circuit 

(ASIC) [6]. These recently created AI neural 

network (NN) models are forecasting techniques 

that are based on nonlinear mathematical 

equivalent and have been used in the fields of 

face verification [8], picture resolution 

processing [7], human action identification 

[9], and natural language processing. 
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systems in difficult conditions. The primary 

difficulty with the existing HIL emulation 

method is the limited computing capacity 

provided by the old-school electromagnetic 

transient (EMT) techniques. To be more 

precise, when power electronic systems get 

more integrated, they add an excessive 

number of system nodes to the circuit 

network, which causes a significant 

execution delay in reaching the answer. A 

fresh opportunity to depict the next- 

generation circuit solver has recently arisen 

with the development of artificial 

intelligence (AI) and its application- 

specific integrated circuit (ASIC) [6]. These 

recently created AI neural network (NN) 

models are forecasting techniques that are 

based on nonlinear mathematical equivalent 

and have been used in the fields of face 

verification [8], picture resolution 

processing [7], human action identification 

[9], and natural language processing[10]– 

[12]. The field-programmable gate array 

(FPGA), a configurable logic block (CLB) 

matrix with programmable interconnects, is 

the optimal hardware for the NNs' intrinsic 

enormous parallel network structure that 

may achieve great execution efficiency. 

I. BACKGROUND ON MACHINE 

LEARNING 

This section discusses generic ML approaches 

for modeling equipment in power conversion 

systems, such as classic artificial neural 

networks (ANN) [13], [14], and recurrent 

neural networks (RNN). RNNs are classified 

into three types: a traditional recurrent neural 

network (CRNN) [15], long short-term memory 

(LSTM) [16], and other neural networks 

GRUs are gated recurrent units [17]. 

Regardless, all of these ways are important NNs 

nowadays, with varying performances for ATA 

modeling This section also illustrates the 

methods and structures of NNs. 

A.TYPES  OF  NEURAL  NETWORK 

CELLS NNs are created by replicating the 

neuronal architecture of the human brain, and 

the basic building block is known as a neuron, 

as depicted in Fig. 1. (a). A conventional ANN 

layer can be created by combining a number of 

individual neurons. Each NN has an input layer, 

a hidden layer, and an output layer. Currently, a 

network is known as a convolutional neural 

network 

 

Diagram 1. Neural network organization: ANN, 

CRNN internal structure, LSTM, CRNN, GRU, 

and unrolled CRNN are only a few examples. 

(CNN) has developed into a hub for researchin 

several fields. RNNs may handle material 

pertaining to the past and the present in 

comparison to CNN. They can produce their 

prediction after learning from the historical data 

in a time series. A typical CNN application unit 

in Fig. 1(d) consists of a CRNN cell and 

occasionally an ANN. 

by Zi (i stands for information). It primarily 

chooses and memorizes the inputs Xt and Ht, 

which record the crucial information and 

discards the less crucial ones. The output gate, 

which Zo controls, scales Ct (changes via a 

transactivation function) produced in the earlier 

step. 

stage. GRU, another well-liked variety of RNN, 

was proposed in [17, as seen in Fig. 1(e). It is a 

long-term predictive alternative to LSTM that 

can be used for time-series prediction, such as 
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traffic flow prediction [19]. GRU is simpler 

than LSTM because it replaces the forget gate 

Zf and input gate Zi with a single update gate Z. 

The input Xt and prior state Ht are used to create 

the reset matrix R, and it then resets the 

information in [Xt, Ht] as 

 

 

 

Similartotheresetstage,theupdatematrixZiscalc 

ulated by input Xt and previous state Ht−1. After 

that, the present hidden state ht 

isupdatedbyZ, Ht−1, and. The comparison of 
these NNs with time-series inputs is shown in 

Table 1. Among these NNs, ANN is the simplest 

NN with minimum execution time and accuracy 

but costs maximum resource 

consumption. 

NEURAL NETWORK CELL  COMPLEXITY  It is 

evident from Fig. 1 that the complexity of various 

types of RNNs varies depending on their structural 

makeup. A linear ANN with one hidden layer and 

matrix multiplication, for example, has a 

complexity of O(n3) and is typically studied and 

represented as O() when discussing NN 

algorithms. However, because O() only considers 

the function or the orders of magnitude (for 

example, O(n), O(n3), O(log(n)), etc.), it is unable 

to show the specific execution timings. primarily 

depends on the feedforward depth. The execution 

time, T, is provided as follows and n (m 1) times 

multiplications for each matrix. The execution 

times of NN cells can therefore be examined by 

matrix multiplication from fig. 

Therefore,the ATA topology, which is similar to 

the Boeing-787 MEA microgrid [24], is used as 

the case study in this paper. The entire system 

can be seen in Fig. 2(a), which includes a 

synchronous generator, three auto-transformer 

rectifier units (ATRU), two permanent magnets 

synchronous motor (PMSM) drives systems, and 

an energy storage system (ESS). The three 

MLBB categories of component-level, device- 

level, and system-level equipment can also be 

applied to other types of machinery. These pieces 

of equipment are categorized based on their 

complexity and purpose. Then, in order to model 

these devices, a specific type of NN technology 

can be used, or one device can be modeled as a 

hybrid model. The entire system is created in 

PSCAD/EMTDC to obtain the dataset for 

system-level ML model training. The ESS for the 

specific component is then created in SaberRD 

for the device-level dataset. 

MODELS AT THE PARTICULAR LEVEL 

For the ATA, only the inductor and capacitor are 

the subject of component-level ML models. 

Component-level models are the easiest ML 

models because of how easily they can be 

constructed. The traditional inductance model 

can be represented in Fig. 3(a) as (5); for the 

discrete-time solution, the difference equation 

can be obtained as (6) [25], given as: 

VM(t)in(t)+vm(t t)vn(t t) 2 =L in(t)in(t t)) t. VM 

and vn are equal to L dimn it. (6) A history 

message, denoted by the symbol hist(t) in 

equation (7), can be used to calculate the present 

value. It was part of the answer for the previous 

time-step. Finally, the iterative. 
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Equations (8) and (9) are utilized in the 

conventional transient simulation and may also be 

applied to a CRNN model, as demonstrated in Fig. 

3. (b). When L is known, the weights and bias of 

CRNN can be calculated directly from 

And without the need for any training. The 

arrows in Fig. 3(b) of each color stand for 

different parameters in the conventional 

equations and, which clearly demonstrate how 

the conventional model is changed into the ML 

model. 

 

 

 

 

A. DEVICE LEVEL MODELS The NN 

structure of device-level models is the same as 

that of system-level models, however, there are 

two key distinctions: 1) Time step at the 

nanosecond scale. To describe the device-level 

transient processes, the interval is 50 ns. As a 

result, there will be larger, more difficult-to- 

train datasets and complicated models at the 

device level. 2) Increased size 

(C) While device-level ATA transients 

consume a lot of hardware resources, system- 

level ATA transients can be done across a 

greater time step. System-level models can thus 

respond more quickly with larger time steps and 

less execution as device-level models 

concentrate on specifics and update with shorter 

time steps. As a result, system-level models 

(such as converters, rectifiers, transformers, 

synchronous generators, and PMSMs) are 

developed with fewer hidden sizes and layers 

and trained using system-level data. Through 

this strategy, these models can be simplified to 

a certain extent, using fewer hardware resources 

and making training easier. Despite not having 

the same level of accuracy in their system-level 

applications as device-level models, they may 

not output the model's detailed transient within 

a short interval 

DYA.LHURONIC MODELS A piece 

equipment is said to have hybrid models if it 

contains numerous NNs of the same or different 

sorts or even multiple NNs of the sametype. 
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FIGURE 4. Performance comparison and 

schematic for the PMSM single NN model. 

a combination of classical models and NNs. 

Instead of using a single NN model, hybrid 

models are preferred for two key reasons. 1) 

Highly effective execution Figure 2 displays a 

hybrid SiC IGBT device model (b). It is divided 

into two sections: a system-level RNN model 

and a device-level ANN model that handles 

transient processes with five input signals 

(deals with the steady-state processes with three 

input signals in time series). 

dλd dt 

 

 

Figure 5: Pitfalls' root causes Internalsynchronicity; 
illogical topsy-curviness 

Even though no parameters, such as Ld, Lq, R, 

pm, etc., are known, an RNN current unit, a 

CRNN model, and a component of the PMSM 

hybrid model can be taught and established. The 

electric torque Te can be calculated using the 

formula Te = 3 2 p 2 λpmiq + 

 

where vd, vq, id, and IQ represent the Q axis 

voltage and current of PMSM; Ld, Lq, and R 

mean its dqaxis inductance and resistance; λpm, 
λd and λq are the flux linkage of permanent 
magnets and DQ axis flux linkage in the stator; 

and ωe is the electrical supply frequency. Then, 

to obtain it and id, a new expression can be 

derived from(10)–(13) or simply expressed as 

the following nonlinear model iq, 

id = f vq, vd , ωe. 

hybrid model and Figure 4 depicts how PMSM 

can be constructed as a single CRNN model (a). 

The analytical equations of PMSM are first 

provided in order to explore the differences 

between these two models: 

RIQ + ED + vq 

dλq dt 

, (10) 

vd = Rid eq plus 

Ld − Lq id iq , (15p and it can also be calculated 

using an RNN torque unit, a CRNN model, and 

a component of the PMSM hybrid model. The 

relationship between the mechanical section's 

speed and torque is provided as J dωr dt = Te − 
Tm − Bωr, (16) dθm dt = ωr, (17m are the 

mechanical rotor speed, electrical torque, and 

mechanical section speed, respectively. 

model's time-step is reduced, the ML model just 

accepts y(t). 

t 1)asy(t), and it was unable to understand the y 

(y=y(t)y(t 1)). If the difference is less than 0.1 

percent, the model will accept it as tolerable. A 

PMSM single NN model's outputs are highly 

reliant on its inputs. If the proper inputs are 

provided, the desired results will be obtained. 

However, the PMSM single NN model will not 

be stable when inputs with small errors are 

given, making it difficult to output the trend as 

a result of iteration in conventional processing. 

There are still pitfalls for the PMSM single NN 

model even if the time interval is sizable: 1) Fig. 

5's internal interlock (a). Block B is the polar 

opposite of Block A, which represents the 
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mathematical logic of Te's id and IQ generators 

in the CNN. He has a significant relationship 

with id and IQ, which implies They serve as a 

mechanism of encouraging feedback. This 

produces a model. 

 

 

II. MLBB IMPLEMENTATION FOR 

REAL-TIME HIL EMULATION OF ATA 

SYSTEM The MLBBs method can take 

advantage of FPGA technology for concurrent 

HIL simulation. This section introduces dataset 

processing and parameter design for NNs 

modeling, followed by discussions of training 

capabilities, hardware platform, and a 

comparison of RNNs. The hardware resource 

usage is then examined. 

A.DATABASES The most crucial 

components of ML training are datasets and 

normalization because they have a big impact 

on the outcomes. The datasets must include a 

variety of equipment operating circumstances 

in order to ensure the generality of the models. 

As an illustration, the data collection for the SiC 

IGBT model is used. While the ESS topology in 

SaberRD is identical to that on FPGA, the 

operating voltage and current provided by the 

two-quadrant buck converter are flexible 

enough to train the adaptable SiC IGBT ML 

model. 

B.MODELING  PARAMETERS  Prior  to 

talking about the parameters, a performance- 

based criterion is introduced. The mean 

absolutes error (MAE) is an additional criterion 

to assess errors, and the mean squared error 

(MSE) is a recommended criterion for 

evaluation in machine learning. Their outcomes 

in these models are comparable, but MAE has a 

value that is more consistent across the entire 

dataset. 

The two-quadrant buck converter offers a 

variety of inputs that can be used to train the 

flexible SiC IGBT ML model. While some of 

these working circumstances resemble thoseon 

FPGA, some are different. The SiC IGBT ML 

model is created, and it. The two-quadrant buck 

converter offers a variety of inputs that can be 

used to train the flexible SiC IGBT ML model. 

While some of these working circumstances 

resemble those on FPGA, some are different. 

The SiC IGBT ML model can be constructed 

and used for many power converter types. It is 

important to note that the dataset does not call 

for the sampling of continuous and dense data 

for training. The training dataset can sample 

with a somewhat big interval from the original 

dataset. Next, all of the data 

MAE = n i=1 ypre i − yi n . (18 

1, by adjusting the hidden size and sequence 

length. The default layer size for all models is 

hence 1. As seen in Fig. 6, a PMSM single 

CRNN model is investigated in order to assess 

the training outcomes for various pairs of 

hidden-size coefficients and sequence length 

when the layer size is 1. (a). In Fig. 6(a), the 

sequence length is the number of RNN calls in 

one layer, and the hidden-size coefficient is the 

multiple of the number of neurons in the hidden 

layer compared to that in the input layer. The 

appropriate parameters for modeling the 

equipment of a power system are indicated by 

the result in Fig. 6(a), which is a circle. The 

values in this study are the standard parameters 

for all RNNs; the hidden size is around 4 times 

the input size, and the sequence length is 3. But 

as the models become more complicated, they 

alter. 

C. RNNS'S TRAINING AND COMPARISON 

In a single PMSM model with a hidden-size 

coefficient of 4 and a sequence length of 3, the 

MAE of various RNN types are given in 

 

Figure 6. (b). As can be observed, LSTM 

outperforms the other two RNNs, but GRU's 

MAE performs similarly to LSTM's when the. 

Results from the model trained with data 

shuffles are shown in Fig. 7(a), whereas results 
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fromthe model trained without data shuffles are 

shown in 

 

 

 

 

Fig. 7(b). This model might narrow its focus 

and fast become overfitted if it was trained 

without data shuffles. 

Fig.7(c)and(d)showhowvaryingLRworks: The 

models can approach the best-weight point with 

variable LR, whereas those with constant LR 

may swing their weight around. 

In this study, MAE is used and is given as MAE 

= n i=1 without losing generality. 

free I yin (18) 

In the field of artificial intelligence, the MAE is 

used as a metric to assess model efficacy 

because it describes errors between expectation 

and prediction. The NNs' predictive output, 

denoted as you, is comprised of three 

components: y, the expected output, and n, the 

number of outputs. To find the best weights and 

least error, the training procedure is then 

iterative and based on the stochastic gradient 

descent (SGD) optimization method [26]. The 

model's MAE is minimized in this work using 

the Adamalgorithm[27], the most well-liked 

SGD optimization algorithm. The layer size is 

an important parameter for NNs. The accuracy 

of NNs increases with the number of layers they 

have. The cost of hardware resources, latency, 

and execution time also rise considerably as the 

number of layers increases. Models with a 

single layer can be adjusted for hidden size and 

sequence length to fit specific application 

needs. As a result, all models have a default 

layer size of 1. The training outcomes for 

various pairs of hidden-size coefficients and 

sequence length when the layer size is 1 are 

evaluated using a single PMSM CRNN model, 

as shown in Fig. 6. (a). The hidden-size 

coefficient in Fig. 6(a) refers to the multiple of 

the hidden layer's number of neurons in relation 

to the input layer's number, while the sequence 

length refers to the number of RNN calls made 

by a layer. The equipment for modeling the 

power system's components can be found inside 

the circle according to the conclusion in Fig. 

6(a). The values presented in this study are the 

standard parameters for all RNNs; the hidden 

size is roughly 4 times the input size, and the 

sequence length is 3. The intricacy of the 

models, however, causes them to change. 

C' . RNNS TRAINED AND COMPARED 

TO EACH OTHER In Fig. 6, the MAE of 

several types of RNN is displayed when the 

hidden-size coefficient is 4, and the sequence 

length is 3. (b). As can be observed, LSTM 

outperforms the other two RNNs; the MAE of 

the GRU is comparable to that of LSTM; and 

when the length of the sequence is short, CRNN 

also performs well. CRNN is the best option for 

the current applications since the sequence 

length is typically less than 4, and it imposes 

significantly less computing cost. A lot of time 

must be spent throughout NN training. Many 

techniques exist for improving training: 2) 

Varying learning rate (LR): LR should 

gradually decrease during training to get higher 

performance with fewer training epochs. 1) 

Data shuffling: To prevent overfitting, the data 

should be shuffled before delivering it to the 

training software. In this work, we employ both 

data shuffle and changing LR. Results from the 

model trained by shuffling the data are shown 

in Fig. 7(a), while those from the model trained 

without shuffling the data are shown in Fig. 

7(b). Without data rebalancing, this model's 

training could have narrowed its focus and 

made it overfit. 

Fig.7(c)and(d)showhowvaryingLRworks: The 

models' best-weight point can be reached with 

changing LR, whereas those with constant LR 

may swing. 

FIGURE 7. Training outcomes and methods. 

Results with and without data-shuffling 

training, training with constant learning rates, 
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and training with changing learning rates are 

shown in (a), (b), (c), and (d), respectively. 
 

 

Figure 8 shows the MAE of the models during 

training. 

weights around the ideal weight. Traditional SG 

has a fixed LR, whereas the Adam algorithm 

has to change LR. By adjusting the starting LR, 

one can reduce the range of LR in the Adam 

algorithm. Without these techniques, the trained 

models might not be available or might not be 

very accurate. Models were trained in a cluster 

of 196 nodes after parameter design, NN type 

selection AAAA n, and training optimization 

technique selection. Four Nvidia V100 Volta 

graphics processing units (GPUs), two Intel 

Silver 4216 Cascade Lake CPUs, and 187 GB 

of memory make up each node. The MLBB 

models were trained using up to 8 cluster nodes. 

On a cluster node, training a single model only 

requires 6–12 hours as opposed to 12–24 hours 

on a personal computer (PC). 

FIGURE 9. The real-time ATA emulation system's 

hardware connection. 

 

 

 

 

 

TABLE 2 shows the hardware resources needed 

to run ML-Models in MEA. 

 

different from the training datasets are the test 

datasets. All of the CRNN models in this study 

FIGURE 9. The real-time ATA emulation 

system's hardware connection. are constructed 

under 1% MAE after 100 epochs, despite the 

fact that the NN parameters design, complexity 

of the modeling objects, epoch number, the 

training technique, and other factors can affect 

the MAEs during training. These models are put 

into the conventional simulation system to run 

various evaluation settings in order to test their 

generalizability. The models will only be used 

to develop system block by block on an FPGA 

if they pass all of these check. 
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D. hardware platform, 

or D The MLBB models are updated using the 

C programming language in Xilinx HLS, which 

converts the C functions into IP cores for 

parallel execution. The bitstream file is 

generated and downloaded into the HBM 

FPGA-based Xilinx VCU128 board after IP 

cores are applied in Xilinx Vivado. In Fig. 9, the 

hardware connection is displayed. The 

XCVU37P FPGA features 4,032K block 

random access memory (BRAMs), 9,024 digital 

signal processors (DSPs), 2,607,360 flip flops 

(FFs), and 1,303,680 lookup tables. It operates 

at 100 MHz (LUTs). Additionally, 2,238 

BRAMs (56 percent), 6,158 DSPs (68 

percent), 71,963 FFs (3 percent), and 483,013 

LUTs are used overall in ML models (37 

percent ). Table 2 displays the hardware 

resource use. The unrolled factors for the 

models' designed tanh() look-up tables are the 

main reason why all of them use 4.27 percent 

BRAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. System-level and 

device-level hybrid models’ results for 

the MEA system from real- time 

emulation (top oscilloscope sub-

figure) and off- line simulation by 

PSCAD/EMTDC or SaberRD 

software (bottom sub-figure) for: (a) 

PMSM rotor mechanical angle; (b) 

PMSM d -axis current; (c) PMSM q-

axiscurrent; (d) system-level IGBT 

ML model output voltage; (e) system-

level IGBT ML model output current; 

(f) PMSM torque; (g) device- level 

SiC IGBT ML model output voltage; 

(h) device- level SiC IGBT ML model 

output current; and (i) PMSM rotor 

speed. Scale: (a) x-axis: 50 ms/div. (b) 

(c) (f) (i) x-axis: 500 ms/div. (d) (e) x-axis: 200 

µs/div. (g) (h) x-axis: 200 ns/div. 

Journal of Engineering Sciences Vol 16 Issue 05,2025

ISSN: 0377-9254 jespublication.com Page 1006 of 1008



 

 

 
 

 

 
 

 

FIGURE 11. System-level models’ 
results for MEA system from real-

time emulation (top oscilloscope 

sub-figure) and off-line simulation 

by PSCAD/EMTDC software 

(bottom sub-figure) for: (a) generator 

output voltage; (b) converter output 

current; (c) converter output voltage; 

(d) transformer output voltage; (e) 

rectifier output current; and (f) 

rectifier output voltage. Scale: (a) (c) 

(d) (e) x-axis: 10 ms/div. (b) (f) x-axis: 250 

ms/div. 
 

FIGURE 11. Results for the MEA system's 

system-level models for the following 

parameters: (a) generator output voltage; (b) 

converter output current; (c) converter output 

voltage; (d) transformer output voltage; (e) 

rectifier output current; and (f) rectifier output 

voltage. Scale: (A) (C) (D) (E) The x-axis is 10 

ms/div; (B) and (F) are 250 ms/div. Within one 

second, all models can be processed. The 

PMSM ML model has the longest latency of 

0.81 s and uses the most resources, using 172 K 

BRAMs (4%) and 41,652 LUTs in addition to 

649 DSPs (7%) and 9,498 FFs (0.4%). (3 

percent ). On the FPGA, the entire simulation 

runs in real-time with time steps of 1 s at the 

system level and 50 ns at the device level, 

whereas on a PC with 16 GB of RAM and a 4- 

core 3.4 GHz CPU, the same system in 

PSCAD/EMTDC requires approximately five 

minutes of execution time for every second of 

MEA simulation. 

III. OUTCOMES AND DISCUSSION This 

section contrasts the outcomes of the proposed 

MLBB-based FPGA emulation with those of 

the established transient techniques, which 

make use of SaberRD for device-level 

simulation and PSCAD/EMTDC for system- 

level simulation. Every ML model operates 

under the same conditions and under the same 

control. The PMSM in this system changes its 

speed and mechanical load at 1s, 2s, 3s, 4s, and 

5s, respectively; other equipment is anticipated 

to maintain stable outputs in relation to the 

variations in the PMSM. 

hybrid ML models for PMSM. In Fig. 10, the 

slow frequency shifting of rotation is 

demonstrated by another significant variable, 

the rotor mechanical angle, when the PMSM 

changes speed (a). Additionally, the output of 

the hybrid ML model matches that of the 

conventional model, confirming itscorrectness. 

Results from a single CRNN model are shown 

in Fig. 11 for each piece of system hardware. 

Fig. 11 depicts the generator's output voltage 

and frequency, which are both 300 V and 400 

Hz (a). The converter's output current and 

single-phase voltage are then depicted in Fig. 

11(b) and FIG (c). The changing speed and load 

of the PMSM create a change in the current 

value. Fig. 11(c) shows that the results follow a 

similar trend, proving that the CRNN converter 

performs well in the same system as the 

conventional model. Fig. 11(d) shows the 

transformer's output voltage result, which has a 

line-to-line output voltage amplitude of roughly 

550 V. Fig. 11(e) and (f), respectively, show the 

rectifier's output voltage and current. Due to the 

variable load, the voltage in Fig. 11(f) floats at 

approximately 520 V during the operating 

period. The system-level CRNN models 

perform nearly as well as those from 

PSCAD/EMTDC, according to all the results. 
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Fig. 10(g) and (h), which depict the SiC IGBT's 

turn-off transient in Fig. 10(d) and (h), show the 

distinction between system-level and device- 

level ML models (e). These outcomes are 

derived from the hybrid SiCIGBT device-level 

model in Fig. 2. (b). The internal steady-state 

unit and the entire hybrid Si C IGBT device 

model are output as two channels for 

comparison. For the system-level CRNN 

steady-state model and the device-level ANN 

transient model, the intervals are 50 ns and 1 s, 

respectively. The outputs from the system-level 

model, which serves as the steady-state unit in 

the IGBT hybrid model, are shown in Fig. 10(g) 

and (h), whereas the outputs from the SiC IGBT 

device-level hybrid model are shown in blue 

curves. While the device-level outputs exhibit a 

nonlinear transient, the system-level output 

voltage, and current leap linearly from two 

levels. 

Inference 

Conclusion VI This study suggested an MLBB- 

based modeling approach to accurately and 

efficiently simulate the transients of ATA at the 

component (50 ns time-step), device (50 ns 

time-step), and system (1.0 s time-step) levels 

on the FPGA platform. Finally, the correctness 

of various level models is examined and 

contrasted with offline findings from the 

PSCAD/EMTDC (system-level) and SaberRD 

(device-level) tools. These benefits apply tothe 

suggested approach: 1) High execution 

efficiency: MLBBs use matrix inversion rather 

than the traditional matrix solver, which 

significantly reduces model latency and 

computational complexity for each execution 

step. ML algorithm also causes less execution 

delay for nonlinear processes than the 

traditional iteration algorithm, and NNs are 

ideal for parallel execution by FPGAs. 2) 

Flexible modeling: despite the system's devices' 

differences, they can be modeled using a 

comparable ML framework; 

 

 

TABLE 3. PMSM Drive System and ESS 

Parameters on MEA 

 

 
 

 

ML models can be produced by the outward 

properties of operating devices, whereas 

traditional modeling methods need to halt the 

devices and verify internal attributes. The 

emulation system can be divided into 

hierarchical execution units based on the user's 

specifications. 3) High accuracy: For every 

model in the ATA, the error between the MLBB 

outputs and the original datasets is less than 1%. 

The aforementioned advantages greatly 

increase the versatility, adaptability, and 

executability of MLBBs. Future studies will 

concentrate on real-time multi-domain 

modeling and simulation of ATAs based on the 

MLBB technique. 

 

 

APPENDIX Table 3 displays the 

characteristics of the PMSM driving system and 

the ESS on MEA. 
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