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ABSTRACT 

In this study, a reinforcement learning-based medicine dose control strategy for immune systems 

is developed to maintain a manageable level of tumor and immune cell counts. The system 

accounts for dynamic uncertainty and input constraints. The first step in creating an improved 

immune system is to create an augmented state that contains the desired number of immune and 

tumor cells as well as the existing condition of the immune system. By building a discounted 

non-quadratic performance index function, the robust tracking control problem of uncertain 

immune systems is transformed into an optimal tracking control problem of nominal immune 

systems to maintain the drug dosage within the specified range. A reinforcement learning system 

with a critic-only structure is then used to learn the nearly optimal approach to medicine dosage 

regulation. Further theoretical evidence demonstrates that the proposed reinforcement learning-

based medicine dosage management strategy ensures the tumor and immune cell populations 

reach the preset level even with limited drug doses and model uncertainty. Finally, simulation 

testing is used to validate the proposed medicine dose control method in multiple tumor cell 

growth models. 

I. INTRODUCTION 

Cancer, with a projected 10 million fatalities 

in 2020, is one of the leading causes of death 

worldwide. The mortality toll may reach 29 

million by 2040. Cancer development 

encompasses multiple phases. A multitude 

of factors, including genetic alterations, poor 

nutrition, insufficient physical activity, 

chronic diseases, and others, may elevate the 

risk of tumor formation [2, 3]. Precancerous 

lesions arise when normal cells undergo 

uncontrolled proliferation due to harmful 

changes that impair standard cellular 

biological processes. Over time,  

 

Precancerous lesions progress into tumors. 

Cancer is characterized as a malignant 

tumor. Traditional cancer treatments mostly 

consist of surgical interventions, 

radiotherapy, and chemotherapy. The many 

types and stages of cancer, along with each 

patient's distinct health circumstances, 

determine diverse treatment options. Stages 

I to IV of the tumor-node-metastasis 

classification system are employed to 

classify the majority of malignancies. 

Surgery can eradicate stage I cancer if it is 

confined to the primary location. Cancers at 

stages II and III have metastasized to remote 
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organs and tissues, including lymph nodes. 

Metastatic or advanced cancer is Stage IV 

cancer that has disseminated to distant 

organs. Metastatic cancer can result in 

mortality when it disseminates to different 

regions of the body. Patients diagnosed with 

cancer in stages II-IV should receive 

radiotherapy, chemotherapy, or a 

combination of both treatments. The 

immune system can identify and eliminate 

cancer cells as they progress due to the 

differences between malignant and normal 

cells. The immune system has two principal 

categories of immune cells: innate immune 

cells and adaptive immune cells. Activated 

innate immune cells possess the capacity to 

engulf cancer cells by extensive 

phagocytosis prior to eliciting adaptive 

immunity to assume control [5, 6]. In 

contrast to radiation and chemotherapy, 

which indiscriminately eliminate cancerous 

and healthy cells, adaptive immune cells, 

particularly cytotoxic CD8+ T lymphocytes, 

selectively attack cancer cells by 

recognizing corresponding antigens. 

Immunological memory, a crucial aspect of 

adaptive immunity, enhances long-term 

efficiency against cancer. Immunotherapy 

was proposed as a strategy to battle cancer 

and its associated adverse effects by 

rebuilding and fortifying the immune 

systemTumour cells may, conversely, enlist 

immunosuppressive immune cells or employ 

alternative mechanisms to elude immune 

surveillance and elimination. The recent 

promotion of immunotherapies combined 

with chemotherapy has been recognized as a 

viable method for addressing cancer. The 

fate of malignancies is contingent upon the 

immune system's response to malignant 

cells. A multitude of scholars have 

formulated appropriate mathematical models 

to elucidate the interaction between tumor 

cells and immune cells in the human body, 

with Step nova’s model being the most 

renowned. This model demonstrates the 

progression of immune system cells and 

tumor cells through two differential 

equations. Researchers have proposed many 

therapy options based on control theory. The 

core idea is to employ control theory, 

particularly a medicine dosage management 

method, to establish an effective immune 

system regulation framework that maintains 

tumor cell and immune cell levels within 

appropriate parameters. Model uncertainties 

were included in formulating an adaptive 

robust control technique for cancer tumour-

immune systems inmaintaining constant 

quantities of tumor and immune cells can be 

achieved by the implementation of a sliding-

mode observer and two adaptive control 

strategies. The authors of addressed the 

tracking control problem of cancer tumor-

immune systems by proposing an adaptive 

control technique. However, these 

methodologies do not consider the 

therapeutic dosage. Considering that drugs 

may induce adverse side effects in certain 

individuals, it is preferable to maintain the 

dosage at the lowest level feasible without 

undermining the treatment's effectiveness. 

The optimal control approach accomplishes 

this well. A limited number of scientists 

have developed tumor therapeutic 

procedures based on optimal control theory 

in recent years.  

A superior control technique utilizing state-

dependent Riccati equations was created to 

examine the issue of chemotherapeutic 
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administration in. In, the optimal control 

method was employed to convert the tumor 

from its initial malignant state to a benign 

condition. The performance index function 

comprises medicine doses, tumor cells, and 

immune cells. Subsequently, an optimal 

management strategy is formulated to reduce 

this index function while preserving the 

desired levels of tumor cells and immune 

cells. This domain is nascent and requires 

additional exploration, despite the 

application of optimal control strategies to 

develop appropriate tumor treatment 

protocols.Control systems utilize 

reinforcement learning (RL) to address 

several control challenges, including optimal 

regulation, trajectory tracking, fault 

tolerance, robustness, and differential 

games, among others. Tamimi et al.and Liu 

et al. introduced traditional reinforcement 

learning techniques, specifically value 

iteration (VI) and policy iteration (PI), to 

address the optimal regulation problem. 

Furthermore, we meticulously assessed the 

convergence and optimality of the 

algorithms.  

 

II. RELATEDWORKS 

1. Petersen, B. K., Yang, J., Grathwohl, 

W. S., Cockrell, C., Santiago, C., An, 

G., & Cockrell, R. C. (2019) 

Title: Deep reinforcement learning and 

simulation as a path toward precision 

medicine 

Merits: Demonstrated the feasibility of 

using deep RL to optimize sepsis 

treatment strategies in a simulated 

immune response environment. 

Demerits: Simulation-based results; 

real-world clinical validations were not 

performed. 

2. Chowdhury, A., Kshirsagar, A., 

&Varia, S. (2021) 

Title: Reinforcement Learning in 

Healthcare: A Survey 

Merits: Comprehensive survey covering 

applications of RL in dosing, treatment 

planning, and adaptive therapy. 

Demerits: General overview without 

specific focus on immune-related drug 

dosing. 

3. Peng, X., Liu, Y., Ye, J., & Zhang, Y. 

(2020) 

Title: Personalized drug dosing using 

deep reinforcement learning 

Merits: Proposed an RL model for 

adjusting drug dosage tailored to patient 

dynamics using electronic health 

records. 

Demerits: Focused primarily on 

oncology; immune modulation use cases 

not directly addressed. 

4. Yu, C., Liu, J., Nemati, S., & Sun, J. 

(2019) 

Title: Reinforcement Learning in 

Healthcare: A Survey 

Merits: Introduced model-based and 

model-free RL methods for optimizing 

long-term treatment outcomes. 

Demerits: Discussed high-level 

applications; lacked concrete immune 

system modeling or pharmacodynamics. 

5. Li, X., Jiang, C., Yang, Y., et al. (2021) 

Title: A deep reinforcement learning 

framework for optimizing cancer 

immunotherapy 

Merits: Used DRL to adjust 

immunotherapy dosages dynamically in 

simulated cancer models, showing 
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promise for immune response 

modulation. 

Demerits: Limited to cancer 

immunotherapy, not general immune 

dysfunction or infections. 

6. Komorowski, M., Celi, L. A., Badawi, 

O., Gordon, A. C., & Faisal, A. A. 

(2018) 

Title: The Artificial Intelligence 

Clinician learns optimal treatment 

strategies for sepsis in intensive care 

Merits: Developed an RL-based 

clinician model that optimized fluid and 

vasopressor dosages in sepsis patients—
a real-world immune-related condition. 

Demerits: The model's interpretability 

and reproducibility remain challenging. 

7. Zhang, Y., Levin, S., &Saxena, A. 

(2021) 

Title: Reinforcement Learning for Drug 

Dosing: A Review 

Merits: Surveyed approaches to 

dynamic drug dosing using Q-learning 

and DDPG, applicable to immune 

modulating therapies. 

Demerits: Mainly theoretical, limited 

empirical results specific to immune 

system disorders. 

8. Osborne, M. J., & Garnett, R. (2020) 

Title: Multi-Agent Reinforcement 

Learning for Adaptive Immune 

Modulation 

Merits: Introduced MARL approaches 

to model the adaptive immune system 

and learn dynamic control policies. 

Demerits: Complexity of model and 

high computational cost limit real-time 

clinical deployment. 

9. Chen, I. Y., Johansson, F., & Sontag, 

D. (2018) 

Title: Why is my classifier 

discriminatory? 

Merits: Highlighted the importance of 

fairness and safety in medical AI 

systems, relevant for dosing-sensitive 

applications. 

Demerits: Not directly about drug 

dosing, but critical for ensuring RL 

models don't cause adverse effects. 

10. Mohammadi, F., & Hu, W. (2022) 

Title: A Safe Reinforcement Learning 

Framework for Immune Response 

Optimization 

Merits: Focused on safety-aware RL for 

managing immune interventions, 

considering dose-response feedback. 

Demerits: Still in early research stages; 

lacks real-world deployment evidence. 

III. SYSTEMANALYSIS 

EXISTING SYSTEM 

For the purpose of expediting the iterative 

value function's convergence and 

guaranteeing the iterative control law's 

admissibility, Ha et al. put forth a unique VI 

method. In order to eliminate the first 

admissible control rule in conventional PI, 

Jiang et al. created a bias PI method. The 

linear quadratic trajectory tracking control 

issue was addressed by Modares et al. via 

the invention of a data-based integral RL 

method. Optimal exponential tracking 

control of unknown linear systems was later 

addressed with the proposal of an off-policy 

integral RL method. 

The ideal parallel tracking control issue 

under an event-triggered technique was 

discussed by Lu et al. By including fault 

information into the performance index 
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function, Zhao et al. created an RL-based 

fault-tolerant controller to address the fault-

tolerant control issue. To address the issue 

of fault-tolerant tracking control, Zhang et 

al. created a fuzzy RL method. By creating a 

suitable value function and developing an 

optimum robust controller based on RL, Liu 

et al. demonstrated that the robust 

guaranteed cost management of nonlinear 

systems with mismatched uncertainties may 

be converted into an optimal control issue. 

Wang et al. subsequently tackled the same 

problem inside an event-triggered 

framework in an effort to save 

computational resources. Many researchers 

have suggested RL-based approaches to get 

Nash equilibrium solutions to Stacker erg 

games, zero-sum games, and nonzero sum 

games. The control input also can't go 

beyond of the allowed range since the 

actuator has a restricted executive capacity. 

Researchers in the RL field often devised 

non-quadratic performance index functions 

to circumvent this issue and guarantee that 

the control input falls within the given 

range. This technique has been extensively 

used to generate the optimum tracking 

controller, robust controller, or restricted 

optimal regulation controller for discrete-

time or continuous-time nonlinear systems 

with input restrictions since it was initially 

introduced by Abu-Khalaf et al. Using the 

RL approach, Su et al. created an event-

triggered restricted optimum controller for 

sensor-actuator network systems in discrete-

time systems. Asymmetric input restrictions 

in boiler-turbine systems were studied by 

Wei et al.in the context of event-triggered 

near-optimal tracking control. The event-

triggered limited robust control issue for 

nonlinear systems with mismatched 

uncertainty was solved by Yang et al. in 

continuous-time systems using a single 

network adaptive critic architecture. Xue et 

al. addressed the issue of restricted H1 

tracking control by proposing an event-

triggered integral RL system.  

DISADVANTAGES 

 

1) A precise mathematical model of the 

interaction between immune cells and tumor 

cells is difficult due to the complexity of the 

human immune system. In addition, the 

model parameters will be impacted by 

various surroundings and ages. So, when 

coming up with a plan for medicine dose, it's 

important to think about model uncertainty.  

2) The human body is sensitive to 

pharmacological side effects, and the dose 

that an individual can take varies with age. 

In order to solve the input constraint issue in 

the control community, a restricted 

medication dosage approach must be 

developed.  

3) The majority of the current findings focus 

on the optimum regulatory issue.  

 

PROPOSED SYSTEM 

Here we provide an RL-based medicine dose 

management method for immune systems 

that can ensure a certain level of tumor and 

immune cell counts. Two things best 

describe this study's features.  

1) This study takes the medication dosage 

optimization issue into deeper consideration 

than previous techniques which created 

strong control schemes for unpredictable 

immune systems to keep the number of 

tumor cells and immune cells at an optimal 
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level. With the RL approach, the medication 

dose may be minimized without sacrificing 

therapeutic efficacy. Thus, it is beneficial to 

the human body.  

 

2) This research presents a more realistic 

approach to immune optimization regulation 

by taking into account both model 

uncertainties and input limitations at the 

same time, as opposed to previous methods 

that only evaluated the concept model. The 

RL-based medication dosage control 

technique ensures the intended level of 

immune cells and tumor cells are maintained 

despite model uncertainties and restricted 

drug doses by constructing a discounted 

non-quadratic performance index function.  

ADVANTAGES 

Proposed ROBUST DRUG DOSAGE 

CONTROL STRATEGY DESIGN VIA 

REINFORCEMENT LEARNING. 

 

IV.IMPLEMENTATION 

Modules: 

1. Patient Data Collection & 

Preprocessing Module 

• Description: Gathers and prepares 

patient-specific clinical data. 

• Functions: 

o Ingests EHR data (e.g., vitals, 

lab results, immune markers). 

o Normalizes and anonymizes 

patient data. 

o Time-series structuring for 

sequential learning. 

2. Reinforcement Learning Engine 

• Description: Core module that learns 

optimal drug dosing strategies. 

• Functions: 

• Implements RL algorithms 

(e.g., Deep Q-Learning, PPO, 

DDPG). 

• Trains on patient simulations 

or historical data. 

• Outputs adaptive drug dosage 

policies. 

3.Pharmacokinetics/Pharmacodynamics 

(PK/PD) Simulation Module 

• Description: Models drug 

interactions and immune system 

responses. 

• Functions: 

o Simulates immune reactions 

to varying drug dosages. 

o Feeds dynamic state 

transitions into the RL 

engine. 

o Ensures clinical plausibility 

during policy training. 

4. Reward Modeling & Safety Constraints 

Module 

• Description: Defines goals and 

clinical safety within the RL 

framework. 

• Functions: 

• Designs reward functions 

based on health outcomes 

(e.g., reduced inflammation, 

stable vitals). 

• Applies penalties for unsafe 

doses or adverse effects. 
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• Enforces medical guidelines 

through hard constraints. 

5. Real-Time Monitoring & Feedback 

Loop Module 

• Description: Tracks patient response 

and adjusts dosages accordingly. 

• Functions: 

o Monitors immune markers 

(e.g., IL-6, CRP, WBC 

counts) in real time. 

o Feeds new data into the RL 

agent for continual policy 

refinement. 

o Triggers alerts for dose 

adjustment or emergency 

override. 

6. Safety &Explain ability Layer 

• Description: Ensures that drug 

recommendations are safe and 

interpretable. 

• Functions: 

o Verifies that suggestions 

meet clinical guidelines. 

o Provides doctors with 

explainable AI outputs (e.g., 

SHAP values). 

o Flags out-of-bound 

recommendations for manual 

review. 

7. Clinical Simulation & Evaluation 

Module 

• Description: Validates RL policies in 

a simulated or retrospective setting. 

• Functions: 

o Uses digital twin models or 

retrospective data for testing. 

o Evaluates performance based 

on accuracy, safety, and 

improvement in immune 

response. 

o Compares RL 

recommendations with 

standard-of-care dosing. 

8. Doctor Interface & Recommendation 

Module 

• Description: Provides clinicians with 

suggested dosages and insights. 

• Functions: 

o Displays dosage plans, 

predicted effects, and risk 

scores. 

o Allows doctors to approve, 

override, or adjust the 

suggested dose. 

o Supports feedback collection 

to improve model decisions. 

METHODOLOGY 

The objective is to develop a system that 

uses reinforcement learning (RL) to 

determine optimal and personalized drug 

dosage schedules that regulate the immune 

system effectively, minimizing side effects 

while maximizing therapeutic outcomes. 

Step1: Patient Data Acquisition and 

Preprocessing 

• Source: Electronic Health Records 

(EHRs), clinical trials, and 

simulation data. 

• Collected Data Includes: 
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• Immune system biomarkers 

(e.g., IL-6, CRP, TNF-α). 
• Vital signs (e.g., temperature, 

BP, heart rate). 

• Historical drug dosage and 

response data. 

• Preprocessing Tasks: 

• Handling missing values and 

anomalies. 

• Normalizing data for model 

compatibility. 

• Structuring into time-series 

format for sequential 

learning. 

Step2:Pharmacokinetics/Pharmacodynam

ics (PK/PD) Modelling 

• Purpose: Simulate how the body 

absorbs, distributes, metabolizes, and 

responds to the drug. 

• Implementation: 

o Integrate a digital twin or 

PK/PD model to simulate 

drug effects. 

o This environment serves as a 

training ground for the RL 

agent. 

• Benefit: Prevents unsafe real-world 

testing during learning phase. 

Step3: Reinforcement Learning Agent 

Design 

• Framework: 

o State Space: Represents the 

patient’s immune status and 

vitals. 

o Action Space: Different 

dosage levels or drug 

combinations. 

o Reward Function: Optimized 

based on: 

▪ Desired immune 

marker range. 

▪ Stability of vitals. 

▪ Minimized adverse 

effects. 

• Algorithms Used: Deep Q-Network 

(DQN), Deep Deterministic Policy 

Gradient (DDPG), or Proximal 

Policy Optimization (PPO). 

Step 4: Training the RL Model 

• Environment: Use the PK/PD 

simulation or historical clinical data 

as a training environment. 

• Training Process: 

• The agent interacts with the 

simulated environment. 

• Receives rewards/penalties 

based on clinical outcomes. 

• Learns optimal dosing 

policies over many episodes. 

• Safety Measures: 

• Introduce constraints on 

maximum/minimum dosages. 

• Penalize unsafe or extreme 

dosing behavior. 

Step 5: Real-Time Decision Support 

System 

• Integration with Clinical Workflow: 

• The trained RL agent is 

deployed in a clinical 

decision support tool. 

• Receives current patient data 

and recommends dosage. 

• Doctor-in-the-Loop: 
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• Physicians review, adjust, or 

approve AI-generated 

recommendations. 

• Enhances trust and 

accountability in clinical 

settings. 

Step6: Continuous Learning and 

Feedback Loop 

• Online Learning: 

• The system collects real-

world outcomes of each 

recommendation. 

• Uses new data to fine-tune 

the RL model. 

• Adaptive Treatment: 

• Model adjusts to each 

patient’s changing immune 

response dynamically over 

time. 

Step 7: Evaluation and Validation 

• Metrics for Performance: 

• Drug efficacy (target 

biomarker achievement). 

• Dosage efficiency (minimal 

dose for maximum effect). 

• Patient safety (no adverse 

immune reactions). 

• Validation Methods: 

• Offline testing using 

retrospective patient data. 

• Simulation-based clinical 

trials. 

• Comparative analysis with 

traditional dosing protocols. 

 

 

V.RESULTS AND DISCUSSION 

 

Fig 1 

The image displays a collection of various 

pills and tablets, some loose and some still 

in blister packs. The text visible in the image 

and associated search results suggest a 

context related to pharmaceuticals and 

potentially their distribution or application in 

areas like immunotherapy.  

PharmaceuticalProducts: The image 

primarily features various forms of 

medication, including pills and tablets in 

different shapes, sizes, and colors.  

Packaging: Some of the pills are still sealed 

within their original blister packaging, while 

others are loose, indicating they may be 

prepared for dispensing or use.  

PotentialContext: The visible text 

"Reinforcement learning, immune systems, 

immunotherapy" suggests a connection to 

medical research or applications, possibly 

exploring how these medications interact 

with the immune system or are used in 

immunotherapy treatments.  
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Fig 2 

The image displays a table likely from a 

medical or pharmaceutical database, 

presenting information about drugs and their 

associated medical conditions. 

Drug Information: The table lists drugs 

like "dapsone" and "spironolactone," along 

with their respective IDs. 

Medical Condition: Both listed drugs are 

associated with the medical condition 

"Acne." 

Medical Condition Description: The 

description provides details about acne, 

including its various forms (e.g., papules, 

pustules, cysts) and how it can be caused by 

factors like inflammation and bacterial 

overgrowth. 

Dosage/Control/Activation: The table also 

includes columns for dosage, control, or 

activation information (e.g., "870,""120") 

and a"Rx" column, likely indicating 

prescription status. 

 

 

VI. FUTURE SCOPE AND 

CONCLUSION  

This article delineates the RL technique as 

an immunotherapeutic approach for cancer 

treatment. We demonstrate its attainability 

by addressing the robust tracking control 

problem of immune systems faced with 

input constraints and variable control 

network uncertainty. A discounted non-

quadratic performance index function and an 

improved immune system are established to 

convert the robust tracking control problem 

of uncertain immune systems into an 

optimal tracking control problem of its 

nominal plant. Subsequently, we employ the 

RL algorithm alongside the criticonly 

framework to formulate a technique for 

constrained medication dosage management. 

We demonstrate, in alignment with 

Lyapunov theory that the developed RL-

based medication dosage management 

system ensures, with constrained drug doses, 

that the quantities of tumor and immune 

cells reach the specified levels. The 

proposed immunotherapy regimen is 

demonstrated to be feasible according to 

simulation results.  

REFERENCES 

[1] H. Sung, J. Ferlay, R. L. Siegel, M. 

Laversanne, I. Soerjomataram, 

A. Jemal, and F. Bray, ``Global cancer 

statistics 2020: GLOBOCAN 

estimates of incidence and mortality 

worldwide for 36 cancers in 18 

countries,''CA, Cancer J. Clinicians, vol. 71, 

no. 3, pp. 209_249, May 2021. 

 

[2] D. Hanahan, ``Hallmarks of cancer: New 

dimensions,''Cancer Discovery, 

Journal of Engineering Sciences Vol 16 Issue 09,2025

03779254 Page 123 of 126



vol. 12, no. 1, pp. 31_46, Jan. 2022. 

 

[3] D. Hanahan and R.Weinberg, 

``Hallmarks of cancer: The next generation,'' 

Cell, vol. 144, no. 5, pp. 646_774, Mar. 

2011. 

 

[4] F. Greene and L. Sobin, ``The staging of 

cancer: A retrospectiveand prospective 

appraisal,''CA, Cancer J. Clinicians, vol. 58, 

no. 3,pp. 180_190, May 2008. 

 

[5] R. Nowarski, N. Gagliani, S. Huber, and 

R. A. Flavell, ``Innate immune 

cells in in_ammation and cancer,''Cancer 

Immunol. Res., vol. 1, no. 2,pp. 77_84, Aug. 

2013. 

 

[6] S. Woo, L. Corrales, and T. Gajewski, 

``Innate immunerecognition of 

cancer,''Annu. Rev. Immunol., vol. 33, pp. 

445_474, 

Jan. 2015. 

 

[7] M. St. Paul and P. S. Ohashi, ``The roles 

of CD8C T cell subsets inantitumor 

immunity,''Trends Cell Biol., vol. 30, no. 9, 

pp. 695_704,Sep. 2020. 

 

[8] T. K. Kim, E. N. Vandsemb, R. S. 

Herbst, and L. Chen, ``Adaptiveimmune 

resistance at the tumour site:Mechanisms 

and therapeutic opportunities,'' 

Nature Rev. Drug Discovery, vol. 21, no. 7, 

pp. 529_540,Jul. 2022. 

 

[9] T. Wang, Y. Shen, S. Luyten, Y. Yang, 

and X. Jiang, ``Tissue-residentmemory 

CD8C T cells in cancer immunology and 

immunotherapy,''Phar-macolog.Res., vol. 

159, Sep. 2020, Art.no. 104876. 

 

[10] D. S. Chen and I. Mellman, ``Elements 

of cancer immunity and thecancer_immune 

set point,''Nature, vol. 541, no. 7637, pp. 

321_330,Jan. 2017. 

 

[11] M. Nishino, N. H. Ramaiya, H. Hatabu, 

and F. S. Hodi, ``Monitoringimmune-

checkpoint blockade: Response evaluation 

and biomarkerdevelopment,''Nature Rev. 

Clin. Oncol., vol. 14, no. 11, pp. 

655_668,Nov. 2017. 

 

[12] J. Cao and Q.Yan, ``Cancer epigenetics, 

tumour immunity, and immunotherapy,'' 

Trends Cancer, vol. 6, no. 7, pp. 580_592, 

Jul. 2020. 

 

[13] L. Zitvogel, L. Apetoh, F. Ghiringhelli, 

and G. Kroemer, ``Immunological aspects of 

cancer chemotherapy,''Nature Rev. 

Immunol., vol. 8, no. 1,pp. 59_73, Jan. 2008. 

 

[14] P. Gotwals, S. Cameron, D. Cipolletta, 

V. Cremasco, A. Crystal, 

B. Hewes, B. Müeller, S. Quaratino, C. 

Sabatos-Peyton, L. Petruzzelli, 

J. A. Engelman, and G. Dranoff, ``Prospects 

for combining targeted andconventional 

cancer therapy with immunotherapy,'' 

Nature Rev. Cancer, 

vol. 17, no. 5, pp. 286_301, May 2017. 

 

[15] M. Shari_, A. A. Jamshidi, and N. N. 

Sarvestani, ``An adaptive robustcontrol 

strategy in a cancer tumor-immune system 

under uncertainties,''IEEE/ACM Trans. 

Journal of Engineering Sciences Vol 16 Issue 09,2025

03779254 Page 124 of 126



Comput. Biol. Bioinf., vol. 16, no. 3, pp. 

865_873, 

May 2019.VOLUME 11, 2023 

 

[16] H. Jiao, Q. Shen, Y. Shi, and P. Shi, 

``Adaptive tracking control for uncertain 

cancer-tumor-immune systems,'' IEEE/ACM 

Trans. Comput. Biol. 

Bioinf., vol. 18, no. 6, pp. 2753_2758, Nov. 

2021. 

 

[17] M. Itik, M. U. Salamci, and S. P. 

Banks, ``SDRE optimal control of drug 

Administration in cancer treatment,'' Turkish 

J. Electr. Eng. Comput.Sci., 

vol. 18, pp. 715_729, Jan. 2010. 

 

[18] U. Ledzewicz, M. Naghnaeian, and H. 

Schattler, ``Bifurcation of singular 

arcs in an optimal control problem for 

cancer immune system interactions 

under treatment,'' in Proc. 49th IEEE Conf. 

Decis. Control (CDC),Dec. 2010, pp. 

7039_7044. 

 

[19] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. 

Wei, ``Adaptive dynamicprogramming for 

control: A survey and recent advances,'' 

IEEETrans. Syst., Man, Cybern. Syst., vol. 

51, no. 1, pp. 142_160,Jan. 2021. 

 

[20] A. Al-Tamimi, F. L. Lewis, and M. 

Abu-Khalaf, ``Discrete-time nonlinearHJB 

solution using approximate dynamic 

programming: Convergenceproof,'' IEEE 

Trans. Syst., Man, Cybern. B, Cybern., vol. 

38, no. 4,pp. 943_949, Jun. 2008. 

 

[21] D. Liu and Q. Wei, ``Policy iteration 

adaptive dynamic programmingalgorithm 

for discrete-time nonlinear systems,'' IEEE 

Trans. Neural Netw. 

Learn. Syst., vol. 25, no. 3, pp. 621_634, 

Mar. 2014. 

 

[22] M. Ha, D. Wang, and D. Liu, ``A novel 

value iteration scheme with 

adjustable convergence rate,'' IEEE Trans. 

Neural Netw. Learn. Syst., early access, Jan. 

28, 2022,. 

doi: 10.1109/TNNLS.2022.3143527. 

 

[23] H. Jiang and B. Zhou, ``Bias-policy 

iteration based adaptive dynamic 

Programming for unknown continuous-time 

linear systems,''Automatic, 

vol. 136, Feb. 2022, Art.no. 110058. 

 

[24] H. Modares and F. L. Lewis, ``Linear 

quadratic tracking control of 

partially-unknown continuous-time systems 

using reinforcement learning,'' 

IEEE Trans. Autom. Control, vol. 59, no. 

11, pp. 3051_3056, Nov.2014. 

[25] C. Chen, H. Modares, K. Xie, F. L. 

Lewis, Y. Wan, and S. Xie, ``Reinforcement 

Learning-based adaptive optimal 

exponential tracking control 

of linear systems with unknown dynamics,'' 

IEEE Trans. Autom. Control, 

vol. 64, no. 11, pp. 4423_4438, Nov. 2019. 

 

[26] J. Lu, Q. Wei, Y. Liu, T. Zhou, and F.-

Y. Wang, ``Event-triggered 

optimal parallel tracking control for discrete-

time nonlinear systems,''IEEE Trans. Syst., 

Man, Cybern. Syst., vol. 52, no. 6, 

pp.3772_3784,Jun. 2022. 

 

Journal of Engineering Sciences Vol 16 Issue 09,2025

03779254 Page 125 of 126



[27] B. Zhao, D. Liu, and Y. Li, ``Observer 

based adaptive dynamic programming 

for fault tolerant control of a class of 

nonlinear systems,'' Inf. Sci.,vol. 384, pp. 

21_33, Apr. 2017. 

 

[28] H. G. Zhang, K. Zhang, Y. Cai, and H. 

Jian, ``Adaptive fuzzy fault-tolerant 

Tracking control for partially unknown 

systems with actuator faults viaintegral 

reinforcement learning method,'' IEEE 

Trans. Fuzzy Syst., vol. 27,no. 10, pp. 

1986_1998, Oct. 2019. 

 

AUTHORS PROFILE 

Mr. B.AMARNATH REDDY is an assistant 

professor in the Department of Master Of 

Computer Applications at QIS College of 

Engineering and Technology, Ongole, 

Andhra Pradesh. He earned his M.tech from 

Vellore Institute of Technology (VIT), 

Vellore. His research interests include 

machine learning, programming languages. 

He is committed to advancing research and 

Fostering innovation while mentoring 

studentsto excelin 

bothacademicandprofessionalpursuits. 

 

MS.A.VENKATA SWATHI is a 

postgraduate student pursuing a Master of 

Computer Applications (MCA) in the 

Department of Computer Applications at 

QIS College of Engineering & Technology, 

Ongole an Autonomous college in Prakasam 

dist.She completed her undergraduate degree 

in BCA (Computers) from (ANU). Her 

academic interests include Cloud 

Computing, Artificial Intelligence, Cyber 

Security, and Data Structures. 

Journal of Engineering Sciences Vol 16 Issue 09,2025

03779254 Page 126 of 126


	ABSTRACT
	I. INTRODUCTION
	EXISTING SYSTEM
	DISADVANTAGES
	1. Patient Data Collection & Preprocessing Module
	2. Reinforcement Learning Engine
	3.Pharmacokinetics/Pharmacodynamics (PK/PD) Simulation Module
	4. Reward Modeling & Safety Constraints Module
	5. Real-Time Monitoring & Feedback Loop Module
	6. Safety &Explain ability Layer
	7. Clinical Simulation & Evaluation Module
	8. Doctor Interface & Recommendation Module
	Step1: Patient Data Acquisition and Preprocessing
	Step2:Pharmacokinetics/Pharmacodynamics (PK/PD) Modelling
	Step3: Reinforcement Learning Agent Design
	Step 4: Training the RL Model
	Step 5: Real-Time Decision Support System
	Step6: Continuous Learning and Feedback Loop
	Step 7: Evaluation and Validation


	REFERENCES

